
A Practical Guide to
Getting Started with

Together ControlCenter

This set of pages is an introductory tutorial and guide for new Together users. Upon completing the tutorial, you should be familiar enough with Together to create applications
from scratch. Plan to spend several hours going through this initial material. For a more in-depth introduction you may want to take longer.

Contents:

Using Together Smart Start●

Quick Tour: Navigating your way around Together●

Tutorial: Building a Together project from scratch●

Software requirements and additional resources●

Using the Practical Guide

Together can be described in many ways. It is a class modeling tool, always keeping source and model diagrams in sync. It is an architectural guide, revealing the physical and
logical layout of a project. It is the primary communication link among analysts, designers, developers, and programmers. It is a customizable Java and C++ programming
environment, with features promoting the best practices in software development. It is an enterprise application development enabler ... and much, much more.

Together is user-friendly but feature rich. This Practical Guide is a collection of pages designed to give you a quick, working knowledge of Together. The collection is divided
into two major sections:

Quick Tour -- shows how to navigate your way around Together.1.

Tutorial -- shows how to construct a project from scratch.2.

You should go through the Quick Tour first -- take advantage of the buttons. We strongly recommend that you do the exercises or at least do some significant
exploration on your own.

When you have learned how to navigate your way around Together, you're ready for the Tutorial. It is built around many steps, formatted as follows.

Step: Something for you to do.

Each step is followed by an explanation, with how-to snapshots and related information.

We can't begin to tell you everything about Together, but this will get you started. You will discover lots of features not covered in this tutorial when you use Together for your
own work. Have fun!

Quick Tour: Navigating your way around Together

The Quick Tour shows the layout and functionality of the Together user interface. It gives insight into the way you can customize Together for your own work.

The Main Window1.

Together Practical Guide

http://localhost/index.html (1 of 2) [5/3/2001 3:48:37 PM]

Exploring the Explorer Pane2.

Navigating Within Together3.

Customizing via Options and Inspectors4.

Tutorial: Building a Together project from scratch

The Tutorial covers the basic features of Together by leading you through the steps of creating a Java application. The Together Tutorial is in Java, although C++ programmers
could easily mimic many of the steps in C++ instead of Java. (At most only a minimal knowledge of Java is required.)

Projects and Packages1.

Requirements and Use Case Diagrams2.

Business Rules and Activity Diagrams3.

Diagrams and Classes4.

Classes and Associations5.

Template Patterns6.

Refactoring with Class Patterns7.

Sequence Diagrams8.

Documentation Generation9.

Audits and Metrics (Together ControlCenter required)10.

Multi-User Support and Version Control11.

Running and Debugging Java Projects12.

Software requirements and additional resources

The Practical Guide requires no special software beyond Together. Together Solo is sufficient for most of the work, although you'll need Together ControlCenter for some
advanced features.

The Together product line, including Together ControlCenter and Together Solo can be downloaded at www.togethersoft.com. Together ControlCenter, the more feature-laden of
the Together products, is available for a free 15-day trial. An abbreviated version of Together Solo is available for free from www.togethercommunity.com.

Together software includes a complete set of documentation. Together users have a forum for exchanging practical information at the Together Community site,
www.togethercommunity.com.

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Thu, Apr 19, 2001

Together Practical Guide

http://localhost/index.html (2 of 2) [5/3/2001 3:48:37 PM]

http://www.togethersoft.com/
http://www.togethersoft.com/
http://www.togethersoft.com/

Together Quick Tour
Part 1: The Main Window

The Quick Tour navigates through some of the basic features of Together. You will start the tour by taking a good look at Together's Main window. The CashSales sample project will form the basis for many of the tour
discussions.

Contents
Opening a project●

Understanding the Main window organization●

Exploring the Main menu●

Exploring the Main toolbar and status bar●

Accessing speedmenus and inspectors●

Opening a project

When you open Together for the first time, it displays an "about" splash screen in the middle of its window. You'll need to close the splash screen before Together will respond to any commands. Click the X in the upper right
corner.

Together works almost entirely within the context of projects. When you open Together without a project, the only information Together shows is in its Explorer pane on the left side of the Main window.

Together Quick Tour -- Part 1

http://localhost/1gettoknow.html (1 of 6) [5/3/2001 3:48:41 PM]

The Explorer pane displays both physical and logical organizations of files. You can use it to navigate within the physical directory of the system or within a project.

The Explorer pane is organized by tabs. The Directory tab (left most tab) shows both the physical directory of your system and the organization of the Together home
folder with respect to projects.

CashSales is a Together sample project that models a simple retail store cash transaction. You can select the project in the Directory by first expanding Samples, then
java, then CashSales.

The Directory displays an icon beside a file name to indicate its type with respect to Together.

files that can be opened with Together's editor

Together project files

other types of files that cannot be opened in the editor

Double-click on CashSales.tpr to open the CashSales project.

Understanding the Main window organization

When you open CashSales, the Main window divides into panes. Together has four major panes.

Explorer pane for system navigation

Editor pane for viewing and editing source code and ordinary text

Diagram pane for creating UML and other kinds of model diagrams

Message pane for system messages and tasks

Together Quick Tour -- Part 1

http://localhost/1gettoknow.html (2 of 6) [5/3/2001 3:48:41 PM]

If a pane is hidden, click its view button on the Main toolbar . The right most button () is a toggle to expand the current pane (the pane with the light blue border) to fill the entire window. (In the snapshot
above, the current pane is the Diagram pane.)

Each pane has tabs for the page in focus. Clicking on a tab brings its page into focus.

You can resize the panes by moving the separators between them.

Exploring the Main menu

The Main menu has nine commands.

Together Quick Tour -- Part 1

http://localhost/1gettoknow.html (3 of 6) [5/3/2001 3:48:41 PM]

File Project and file operations

Edit Editing operations plus "infinite" undo/redo (for most operations -- not just editor changes)

Object Context sensitive menu whose operations vary according to the currently selected object. (This item is available only if the "current item" has a speedmenu.)

Search Search and replace across multiple files

View Toggle panes between hidden and displayed

Select Navigate among panes and diagrams

Options Customize your Together configuration

Tools Access to several system modules

Help Hypertext documentation for Together

This snapshot below shows the Tools menu along with its Documentation submenu.

Most of the Main menu commands have similar cascading menus. Some of the selections have keyboard equivalents. For example, the File|Open Project keyboard
equivalent is Ctrl+Shift+O.

Exploring the Main toolbar and status bar

Buttons on the Main toolbar correspond to some of the commonly used commands from the Main menu.

Each toolbar button has a flyover, which pops up on a mouse-over. The illustration above shows the flyover for the button "Rebuild Project." Incidentally, the Main toolbar is undockable -- simply drag it off the window.

The status bar is at the bottom of the Main window. The large box on the status bar changes according to the mouse-over on the Diagram pane.

Together Quick Tour -- Part 1

http://localhost/1gettoknow.html (4 of 6) [5/3/2001 3:48:41 PM]

Most items on the status bar are self-explanatory, except perhaps the "Diagram View Management" button. That button pops up the Diagram Options window to let you show or hide different kinds of diagram content.

Accessing speedmenus and properties inspectors

Most elements of the Together user interface have speedmenus, also known as "context" or "right-click" menus. They give quick access to common element tasks. (Elements include Together artefacts such as diagrams as well
as UML elements such as class nodes, associations, and use cases.) Many elements also have properties inspectors for easy extensive customization.

Most speedmenus list properties inspectors among their choices. The snapshot below on the shows a class speedmenu in the back with a properties inspector superimposed in front.

To get to a class speedmenu, right click on the class in the Diagram or Explorer pane. The second item on the speedmenu is Properties. Click it
to bring up the properties inspector (in the foreground below). Note the pushpin () in its lower left corner.

Clicking the pushpin on the Properties Inspector docks it on the bottom of
the Explorer pane. To undock, click the pushpin () in the upper right
corner.

Together Quick Tour -- Part 1

http://localhost/1gettoknow.html (5 of 6) [5/3/2001 3:48:41 PM]

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Wed, Apr 11, 2001

Together Quick Tour -- Part 1

http://localhost/1gettoknow.html (6 of 6) [5/3/2001 3:48:41 PM]

Together Quick Tour
Part 2: The Explorer Pane

Together's Explorer pane is a powerful feature for navigation, control, and even code-generation. This part of the tour examines all facets Explorer pane in
detail.

You will see how to use the Explorer to get information about the current project and the file system. You will see how to use the Explorer pane to access
existing code modules. And you will get a glimpse of how Together is extended via built-in and custom building blocks.

The context for all of our discussions is the sample CashSales project.

Contents:
Exploring the Explorer pane●

Directory tab: navigating the file system●

Model tab: examining the logical view of an open project●

Diagram tab: organizing diagrams by type●

Overview tab: controlling the diagram view●

Component tab: accessing and reusing component models●

Module tab: accessing and extending Together building blocks●

Exploring the Explorer pane

The Explorer pane is organized in tabs.

Directory physical structure of the open project and the file system

Model logical view of the project's model elements

Diagram listing of project diagrams by type

Overview thumbnail overview of the Diagram pane

Components reusable component models

Modules custom building blocks

The Directory and Modules tabs are always present. The Model and Overview tabs are present only when there is an open project. The Diagrams tab and the
Components tab are present on request only.

To see the Explorer pane only, bring the Explorer pane into focus, then click the full screen toggle button () on the Main menu.

Directory tab: navigating the file system

Together Quick Tour -- Part 2

http://localhost/2explorer.html (1 of 7) [5/3/2001 3:48:42 PM]

The Directory tab shows the system directory structure relative to Together. The display has the following
top-level directory nodes.

Current project (if a project is open)●

Top-level physical system directories●

Samples -- directory of sample projects that ship with Together●

User projects -- default Together directory for your personal work●

Templates -- Together templates for C++, Java, and CORBA IDL●

When you open a project, a Current Project node appears at the top of the listing. You can expand that node
to see the physical files making up the project.

Double-clicking on a project file opens it in Together. Double-clicking on a text file opens it in the Together
editor (even if no project is open).

The snapshot here shows a Directory tab with the cursor over the java folder. The flyover text is the folder's
pathname. (A flyover box appears whenever the cursor is over an actual folder or file.)

The Directory tab allows you to navigate the physical file system and the current project's physical structure.

Note: You can edit the navigator.config file to limit which drives the directory tab shows. This is especially useful for networked mapped drives.

Model tab: examining the logical view of an open project

Together Quick Tour -- Part 2

http://localhost/2explorer.html (2 of 7) [5/3/2001 3:48:42 PM]

The Model tab exists when there is an open project. It provides a logical view of the major elements
making up the project model.

The Model tab shows everything in the project -- packages, diagrams, classes, and interfaces (Java) -- all
organized into a tree. The tree root corresponds to the project itself. The second level nodes include:

Project packages (subpackages are on lower levels). Our snapshot shows several:
data_management, problem_domain, Requirements, server, user_interface, and util.

●

Diagrams generated from the Main file menu, such as the deployment diagram (POS System) in our
snapshot

●

<default> top-level model●

Top-level interfaces●

The Model does not necessarily reflect the physical structure of the project files, since project packages
can reside virtually anywhere in the system.

The flyover text in the snapshot is the fully qualified name of the class under the cursor.

Frequently accessed model elements can be stored in the Favorites folder at the bottom.

The Model tab has a small toolbar at the top that gives choices for the tree view. The toolbar has three buttons.

Make diagram nodes expandable to show diagram content (toggled off by default).●

Sort package tree nodes alphabetically (toggled on by default).●

Display packages first, before all other items (toggled on by default).●

Diagrams have special icons, such as for a UML sequence diagram. Double-clicking on the diagram in the Model tab opens it in the Diagram pane. You
can use the diagram speedmenu to open it in a new Diagram pane tab rather than in the currently open pane. (You can also set the options to have a double
click open the diagram or other element in a new tab.)

Diagram tab: organizing project diagrams

Together Quick Tour -- Part 2

http://localhost/2explorer.html (3 of 7) [5/3/2001 3:48:42 PM]

The Diagram tab gives a listing of all the diagrams in a project, organized according to type. It appears if
Show Diagrams tab flag is checked on the General page of the Options dialog.

Each node in the Diagram tab corresponds to a diagram type. This tab displays the tree view of all types of
diagrams available in Together.

All diagrams in the current project show up in the appropriate nodes. Expand a node in the usual manner by
clicking it. Open a diagram in the Diagram pane by double-clicking it in the Explorer.

The snapshot here shows a Diagram tab with the listing of Activity diagrams expanded.

Overview tab: controlling the diagram view

Together Quick Tour -- Part 2

http://localhost/2explorer.html (4 of 7) [5/3/2001 3:48:42 PM]

The Overview tab gives a thumbnail sketch of the Diagram pane, placing a shadow over the part of the
diagram that is currently visible. You can use the Overview to control the size and location of the visible
part of the diagram.

The Overview shadow tightly corresponds to the visible region in the Diagram pane. Any change in that
region forces a change in the Overview and vice versa. This includes changes forced by resizing the window
or the panes. (The proportions of the shadow are always constrained to match the proportions of the
Diagram pane.)

The cursor changes in the Overview as it goes over the shadow. The shape of the cursor indicates move or
zoom modes.

To move the visible region without
resizing it, hold down the
left-mouse button while moving
the cursor.

To resize the visible region, grab
the lower right corner of the
shadow and drag.

Components tab: accessing and reusing component models

Together Quick Tour -- Part 2

http://localhost/2explorer.html (5 of 7) [5/3/2001 3:48:42 PM]

The Components tab allows you to access and reuse component
models. It is available only when a project is open. To see
Components with the CashSales project, invoke the project
inspector via the main menu:

 File|Project Properties...

Check "Include Components" on.

The CashSales project uses Coad Modeling Components. These
enterprise component color models are part of the Together
installation.

All components reside in Together's modules/components
directory.

You can copy packages and classes shown in the Explorer
Components to your class diagrams or to any package in your
project.

You can also create your own components. Place them in
component subdirectories for use in projects.

Our snapshot shows some of the Coad Modeling Components.
The small lock on an icon indicates read-only.

Modules tab: accessing and extending Together building blocks

Together Quick Tour -- Part 2

http://localhost/2explorer.html (6 of 7) [5/3/2001 3:48:42 PM]

Together is highly extensible by means of an open Java API. The open API enables you to write Java
programs that use model information from Together and interact with Together itself to extend its native
capabilities. Such building-block programs are called modules.

Modules are stored in subdirectories under:

$TOGETHER_HOME$/modules/com/togethersoft/modules

The Module tab gives access to the modules that are supplied by Together, your own modules, and third
party modules.

The Explorer Modules tab uses these special icons.

Module folder. A folder has the same speedmenu as its contents (to run or activate the module).●

Java source code module●

Compiled Java module●

Tcl script module (included for backward compatibility)●

The Sample/Tutorial directory contains some simple modules that you can examine in the Editor and run.
The standard output goes to the Message pane. Use these tutorial modules to discover how to write your
own modules.

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Thu, Apr 12, 2001

Together Quick Tour -- Part 2

http://localhost/2explorer.html (7 of 7) [5/3/2001 3:48:42 PM]

Together Quick Tour
Part 3: Navigating Within Together

Together is a powerful architectural tool that maintains consistent presentation of the project at all times. The Explorer pane is always in sync with the actual
project. And the code in the Editor pane is always in sync with the model class diagrams.

In this part of the tour, you will look at the connections between the Explorer pane and the Diagram and Editor panes. And you will examine the project
presentation in the Diagram and Editor panes to see how closely knit the two views are.

The context for all of our discussions is the sample CashSales project.

Contents:

Opening and closing diagrams from the Explorer pane●

Opening source code files from the Explorer●

Integrating views -- Explorer to Diagram to Editor●

Opening and closing diagrams from the Explorer pane

Every project has a top-level default diagram. Unless you change its properties, the first time you open a project, the default diagram opens in the Diagram
pane.

Diagrams can be opened in the Diagram pane only from within their projects.

You can open a diagram from the Main menu (under File). But it is easier to open a diagram from the
Model tab () in the Explorer pane by using one of these two methods.

Double click on the diagram (name or icon). It will open in the Diagram pane, closing the current
focus diagram (if any).

--or--

●

Right click on the diagram in the Model tab to get its speedmenu, then select Open in New Tab.
This opens the diagram in a new tab without closing the current one.

●

There are different types of diagrams, each with an associated icon. is the default diagram icon. Together's UML diagram icons are abstractions of actual

Together Quick Tour -- Part 3

http://localhost/3navigation.html (1 of 5) [5/3/2001 3:48:45 PM]

diagrams.

class/object sequence statechart component

use case collaboration activity deployment

The Model tab of the Explorer displays diagram files with those icons. The tabs of open diagrams in the Diagram pane uses the icons as well.

Together also has seven special diagram types, mostly for Enterprise or J2EE modeling.

To close a diagram without closing the project, right-click its Diagram pane tab. This brings up a clickable close box like
that on the right.

You can also close a diagram from its Diagram pane speedmenu. Right click on an empty region of the diagram to get its
speedmenu.

Opening source code files from the Explorer

You can open files from three Explorer tabs: the Directory tab (), the Model tab (), and the Diagram tab ().

In the Directory tab, you can open project files () and text files (). Double-clicking on a text file opens it in the Editor pane. Conversely, when you create a
new file (source code or diagram), it will show up in the Explorer.

The Model tab uses three special file icons:

class source file interface source file package directory

Double-clicking on a class or interface in the Model tab opens its source code file in the Editor pane. The snapshot below shows using the model tab of the
Explorer pane to jump to a method in the Editor.

Together Quick Tour -- Part 3

http://localhost/3navigation.html (2 of 5) [5/3/2001 3:48:45 PM]

Double-clicking the diagram name in the Diagram tab opens it in the Diagram pane.

You can also open a file from the Editor pane speedmenu. Choose Open to get a file selection box. Unlike the Explorer, the Editor allows you to open any type
of file.

Integrating views -- Explorer to Diagram to Editor

Sequence diagrams and class diagrams are related directly to source code. We'll use the CashSales project to illustrate some of these connections.

To get the Main window below, follow through these steps:

Expand the problem_domain package in the Model tab of the Explorer pane.1.

Open Total of Sale sequence diagram from the Model pane.2.

If needed, adjust the sliding bars on the Diagram pane to scroll to aDetail. (Alternatively, use the overview tab of the Explorer to position the viewing
region.)

3.

Select the aDetail object in the Diagram pane by clicking on it.4.

Together Quick Tour -- Part 3

http://localhost/3navigation.html (3 of 5) [5/3/2001 3:48:45 PM]

Together Quick Tour -- Part 3

http://localhost/3navigation.html (4 of 5) [5/3/2001 3:48:45 PM]

When you select an object in a sequence diagram, the
Editor automatically scrolls to the corresponding class
code and highlights the first line of its definition.

The snapshot to the right shows selecting the call to
calcPriceForQty() on the sequence diagram. The
method becomes highlighted in the Editor.

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Thu, Apr 12, 2001

Together Quick Tour -- Part 3

http://localhost/3navigation.html (5 of 5) [5/3/2001 3:48:45 PM]

Together Quick Tour
Part 4: Customization via Options and Properties Inspectors

Together gives users many ways to customize their workspaces (including changing the text configuration files). In this part of the Together Quick Tour, you
will learn how to use the properties inspectors and options menus to do the customization. When you are finished, you're ready to begin the Together Tutorial.

The context for all of our discussions is the CashSales project.

Contents:

Accessing default and project options●

Changing diagram options●

Changing editor options●

Customizing via object inspectors●

Accessing default and project options

Default, project, and diagram options are available via the Options command on the Main menu. The dialog box shown below comes from the Options|Default
command. Options are organized by tabs; the General tab is at the front in this snapshot.

Together Quick Tour -- Part 4

http://localhost/4customization.html (1 of 5) [5/3/2001 3:48:47 PM]

Some settings have check boxes. Some are on pulldown menus. Some have text boxes that can be edited in place. Clicking on a setting name brings up its
description on the lower part of the pane.

The snapshot above shows configuring Together for different workspace roles. For example, the Business Modeler role focuses on not exposing extra details in
Diagram pane. The Editor pane shows only on demand, and menus and toolbars are simplified.

The default workspace role is Developer. Changes in the workspace role setting take place when you restart Together, when you select Options|Reload from the
Main menu, or when you click Apply on the options dialog box.

Many of the project options (Options|Project) are available as default options. They can be applied at a project level or as defaults for all projects.

Changing diagram options

Together Quick Tour -- Part 4

http://localhost/4customization.html (2 of 5) [5/3/2001 3:48:47 PM]

Diagram options control the diagram presentation views. You can access a diagrams options by selecting Diagram Options on its speedmenu.

You can apply option settings to a particular diagram or to an entire project. Or you can apply them as defaults for diagrams in all projects.

Changing editor options

Look for the Text Editor Options on the Editor speedmenu. There are several choices for settings.

Font size and cursor orientation●

CodeSense (automatic code completions for Java statements)●

Keyboard hot keys●

Schemes for the project language, such as keyword color, etc.●

External editors, what they are and Together menus on which they'll appear●

Together Quick Tour -- Part 4

http://localhost/4customization.html (3 of 5) [5/3/2001 3:48:47 PM]

CodeSense works with the Java libraries to complete statements. The snapshot below comes from an Editor with activated CodeSense. To get the snapshot
below, we started inside the body of a method. Then we typed s.s to pop up a menu of available String methods.

The Together Editor recognizes source code files in the language of the
current project. With Editor Schemes you can tailor the Editor for your
project language, including such things as keyword color and auto indent.
You can also build templates for commonly used code constructs.

The snapshot to the right shows how we created a new Java switch statement
template. In the Editor options, select Schemes|Java|Snippets to get the
Snippets window.

Back in the Editor, we were able to place the template in the code by typing
the snippet name (switch) then Ctrl+J.

Together Quick Tour -- Part 4

http://localhost/4customization.html (4 of 5) [5/3/2001 3:48:47 PM]

Customizing objects through properties inspectors

Together considers many elements to be objects, including:

diagrams●

most diagram elements●

classes●

java interfaces●

packages●

Each Together object has a speedmenu with a Properties command, which brings up the object's properties inspector. The properties inspector lets you
customize the object's look, behavior, characteristics, and documentation.

Properties inspectors vary according to the kind of object. The picture here illustrates using a properties inspector to customize the color of the
data_management package.

We weren't very pleased with that
fuchsia. So we undid setting the
color scheme by clicking the undo
button () on the Main toolbar.

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Thu, Apr 12, 2001

Together Quick Tour -- Part 4

http://localhost/4customization.html (5 of 5) [5/3/2001 3:48:47 PM]

Together Tutorial
Part 1: Projects and Packages

The scope of the Together Tutorial includes the most commonly used features of Together. We'll show you how to construct your own project from the
beginning. If you are brand new to Together and think you might have trouble navigating your way around, go through the Together Quick Tour before
beginning the work here.

One of the early and continuing hallmarks of Together is its ability to keep class model and code in sync -- all the time, every time. It's what Together calls
LiveSourceTM technology, and you'll get a first peek at it here.

Contents

Creating a new project from scratch●

Working with the <default> diagram and primary root directory●

Creating new packages●

Showing package dependencies●

Tips and Tricks●

Creating a new project from scratch

Most of the Together Tutorial is centered around this sample problem.

"A small regional airline needs an application for keeping track of flight reservations and ticket revenues."

The first step in tackling this problem is to set up a Together project for developing a problem solution.

Step: Create a new Java project named airline.

Open Together and select File|New Project from the Main menu. You'll see a New Project dialog box like the one below.

Together Tutorial -- Part 1

http://localhost/1startingprojects.html (1 of 5) [5/3/2001 3:48:47 PM]

Unless you specify otherwise, Together creates a new directory for the new project inside $TOGETHER_HOME$/myprojects. The name of the directory is
the same as the project name. Together gives a choice of three languages: Java, C++, or CORBA IDL.

At a minimum, a project consists of:

a project file (with the .tpr file extension and icon)●

a default package diagram (default.dfPackage)●

a primary root directory●

When we created airline, Together created three files in the primary root directory airline.

default.dfPackage●

airline.tpr●

airline.tws (Together workspace settings)●

The User Projects folder in the Directory tab of the Explorer pane corresponds to the physical directory $TOGETHER_HOME$/myprojects. The primary root
directory of airline is under User Projects. And since airline is open, its primary root directory appears also under Current Project.

Working with the <default> diagram and primary root directory

Together generates a <default> diagram for each new project. The <default> diagram shows packages of the primary root directory as well as classes of any
source code files in that directory. (Default diagrams and diagrams for packages have the icon . They are class diagrams.)

When a project is first created, the <default> diagram is simply a blank background. Below are two views of the newly created project in the Explorer pane.

Together Tutorial -- Part 1

http://localhost/1startingprojects.html (2 of 5) [5/3/2001 3:48:47 PM]

Directory tab view. The primary root directory (airline) contains no other directories when the project is first created.

Together uses the suffix .tpr to indicate that this is a project file. The suffix .tws is for Together workspace settings. All three
files are ASCII files.

Model tab view. There is only one part of the model. It contains no elements at the start.

Creating new packages

The <default> diagram is the place to start organizing a project into packages. The airline project will have three packages.

Step: Create a new package named ProblemDomain inside the <default> diagram.

To create a new package, click on the package button () of the vertical Diagram toolbar. Then click on the diagram background.
The diagram will get a new node.

At this point, you can edit the package name by typing directly in the in-place editor that is now active. Press Enter to apply the name.

As you make a package, you can see the Together's LiveSource technology go to work -- Together automatically creates a physical directory for the package
and generates a default diagram inside the directory. The new diagram will show any physical project content Together finds now or later.

In the Diagram pane, the <default> diagram now contains a single node, which is a package.

The Model tab of the Explorer pane shows the new Package node. Inside the new package is a node for
another diagram, which has the same name as the package. Both the new package and the new diagram are
currently empty.

The Directory tab of the Explorer shows the new file structure of the project.

There's a new subdirectory of the primary root directory named ProblemDomain. That directory now
contains the file ProblemDomain.dfPackage, which is the default diagram for the new package. (The .wmf
file is a Windows metafile.)

To see the contents of the new ProblemDomain diagram, double click the diagram in the Model tab of the Explorer. Alternatively, use the diagram speedmenu
to open the diagram in a new tab.

Together Tutorial -- Part 1

http://localhost/1startingprojects.html (3 of 5) [5/3/2001 3:48:47 PM]

Step: Create two additional packages in the <default> diagram: UserInterface and DataManagement.

There's a shortcut for creating multiple packages. Ctrl+Click the package button on the toolbar to keep the button depressed. While the button is depressed, you
can click on the Diagram pane, creating packages and renaming them in place without returning to the toolbar for each package.

To release the button, click it again. (If you drop an extra package on the diagram by mistake, the undo button on the Main toolbar will remove it.)

Showing package dependencies

Step: Create a dependency from UserInterface to ProblemDomain.

The Diagram pane toolbar provides an entire suite of tools for creating UML model elements.

To create a package dependency, click the dependency button (with the dashed arrow icon, (). Then
click the dependent package (the "client") in the diagram and drag the end of the arrow to the package
that it depends on (the "supplier").

Your dependency should look like the snapshot here.

You can use the dependency's inspector to alter its properties, including changing its label, picking a stereotype, and setting the roles of supplier and client. To
get the inspector, right-click on the dependency to bring up its speedmenu, and select Properties.

Tips and Tricks

It is best to name projects with legal filenames for your operating system. Avoid embedding blanks punctuation marks, or any special characters.●

The suffix .tpr indicates Together project. Together keeps all of its files in flat ASCII text -- you can view them with an ordinary editor.●

Together Tutorial -- Part 1

http://localhost/1startingprojects.html (4 of 5) [5/3/2001 3:48:47 PM]

Always organize your projects in packages.●

To create multiple nodes of the same type, Ctrl+click the toolbar button to keep it depressed. You can even use the in-place editor as you go along.
Clicking the button again releases it.

●

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Thu, Apr 12, 2001

Together Tutorial -- Part 1

http://localhost/1startingprojects.html (5 of 5) [5/3/2001 3:48:47 PM]

Together Tutorial
Part 2: Requirements and Use Case Diagrams

The first steps of any software project involve nailing down some of its features. The airline problem is potentially huge, but we will concentrate on a small
number of requirements.

Make a reservation.●

Buy a ticket.●

Determine if a flight has room for more reservations.●

Find the total ticket revenue for a flight.●

In this part of the Together Tutorial, you will create a Use Case diagram to capture these requirements.

Contents:

Creating a new diagram●

Creating actors, use cases, and a system boundary●

Connecting diagram elements●

Removing diagram elements●

Tips and Tricks●

Creating a new diagram

Open the airline project that you created for the previous part. Bring the ProblemDomain diagram into focus (bring it to the front in the Diagram pane).

Step: Create a new Use Case diagram named MakeReservation.

Clicking the New Diagram button () on the Main toolbar brings up a New Diagram dialog box.

Together Tutorial -- Part 2

http://localhost/2requirements.html (1 of 6) [5/3/2001 3:48:49 PM]

When you click OK, the new diagram shows up in the Model and Directory tabs of the Explorer pane.

Creating actors, use cases, and a system boundary

The MakeReservation diagram should now be in focus now in the Diagram pane.

Step: Create three actors, Passenger, FinanceOfficer, and Agent.

The Diagram pane toolbar varies according to the type of diagram.

Click the actor button () and then the diagram to create a new actor. With the in-place editor, fill in the actor's name.

If you Ctrl+click the actor button to place an actor in the diagram, you'll be able to create another actor without first returning to the Diagram toolbar. You can
even edit its name as you go along. That's how most of the element buttons on the Diagram toolbars work. To click on the diagram without putting on another

Together Tutorial -- Part 2

http://localhost/2requirements.html (2 of 6) [5/3/2001 3:48:49 PM]

actor, simply click the actor button once again.

Step: Put a system boundary on the diagram and name it Airline Reservation System.

Click the system boundary button () and then the diagram to create the system boundary.
Fill in its name with the in-place editor.

When you finish, you can move the system boundary and resize. Our snapshot shows resizing
by grabbing a corner.

Step: Create four new use cases:

Make a Reservation1.

Check Availability2.

Buy a Ticket3.

Find Ticket Revenue4.

Click the use case button () and then on the diagram to create a new use case. Use the in-place editor to fill in a text
description.

You can create a use case then drag it in the system boundary. Or you can create the use case within the system boundary at the start. You can always reposition
any diagram element by dragging it with the mouse. A use case within a system boundary will move when the system boundary is repositioned.

Connecting diagram elements

Communication links indicate which actors are involved in which use cases. Our diagram will involve the Agent in three use cases. But the Passenger will
participate in only two and the Finance Officer in only one.

Together Tutorial -- Part 2

http://localhost/2requirements.html (3 of 6) [5/3/2001 3:48:49 PM]

Step: Create some communication links:

Between Passenger and Make a Reservation1.

Between Passenger and Buy a Ticket2.

Between Agent and Make a Reservation3.

Between Agent and Buy a Ticket4.

Between Agent and Check Availability5.

Between FinanceOfficer and Find Ticket Revenue6.

You can use the same technique to create any linking element (communication, dependency, association, etc.). Begin creating a link by clicking the
communicates button on the Diagram toolbar ().

A thin halo appears around potential source elements as you pass the
cursor over them.

Click the source element in the Diagram pane and drag the end to the target
element.

Potential target elements also get the halo.

An actor can be a target or a source for a communication link (but not both!). You can start at the use case and stop at the actor or vice versa.

Step: Connect the use cases:

Buy a Ticket extends Make a Reservation.1.

Make a Reservation includes Check Availability2.

The Diagram toolbar has an extends button () and an include button (). The choice of target vs. source choice is important for these links. For example,
when you use extends, be sure that Buy a Ticket is the source and Make a Reservation is the target.

Step: Make sure all use cases are inside the system boundary. Drag the use cases and resize the boundary as needed.

Below is a snapshot of our diagram after we completed all the steps.

Together Tutorial -- Part 2

http://localhost/2requirements.html (4 of 6) [5/3/2001 3:48:49 PM]

You may have to rearrange the elements to make your diagram look ours. Move them around as you see fit. You can drag them individually, or you can select
several to move at the same time.

Removing diagram elements

Step: Corrupt your Use Case diagram with these steps:

Create a new use case (any name will do).1.

Make a communication link between the new use case and the Agent.2.

Create an extends from Check Availability to the new use case.3.

Then move the new use case around several times to observe how Together handles the rearrangement.

Your diagram should be a mess by now, and you need to get it back as it was before.

Together's undo button () on the Main toolbar is a first line of defense in dealing with mistakes. But when the undo stack is high, the undo button may not be
the best way to go.

Step: Get rid of the new (corrupt) use case.

An easy way to get rid of this use case is to delete it. Select it in the diagram and press the Delete key. (Alternatively, select Delete from the element's
speedmenu.) When you do, the bad use case will disappear along with all of its links. There's no need to remove the links separately.

Tips and Tricks

There are three easy ways to rename an actor, use case, or system boundary.●

Together Tutorial -- Part 2

http://localhost/2requirements.html (5 of 6) [5/3/2001 3:48:49 PM]

Double click on the diagram element to bring up the in-place editor.❍

Use the Rename option on the element's speedmenu.❍

Change the name on the Properties tab of the Properties Inspector for the element.❍

To resize a use case, actor, or system boundary in a diagram, select it, then drag on one of its corner handles. To reshape drag on a side or top/bottom
handle.

●

If you make a mistake, use the undo button. Ctrl+Z is a keyboard shortcut for undo. Ctrl+Y is the keyboard shortcut for redo. (The misc.config file sets
the default undo buffer size to 4096 KB. You can change that by editing the file.)

●

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Fri, Mar 30, 2001

Together Tutorial -- Part 2

http://localhost/2requirements.html (6 of 6) [5/3/2001 3:48:49 PM]

Together Tutorial
Part 3: Business Rules and Activity Diagrams

Business rules constitute some of the requirements of a problem. In our previous discussion of use cases, we limited the required features to these four:

Make a reservation.●

Buy a ticket.●

Determine if a flight has room for more reservations.●

Find the total ticket revenue for a flight.●

In this section, we will examine the details of what it means to "Make a reservation" in the context of activity diagrams.

Contents:

Starting activity diagrams based on business rules●

Organizing activities, start and stop states with swimlanes●

Creating activities and transitions●

Changing flow of control with forks, joins, and decisions●

Tips and Tricks●

Starting activity diagrams based on business rules

How can you "Make a reservation?" Our airline uses this (admittedly naive) business rule:

You can make a flight reservation if the number of tickets sold so far for the flight does not exceed the capacity of the airplane.

It's time to focus on exactly what happens when a reservation is requested.

Step: Create a new Activity diagram in the ProblemDomain package and name it Request Reservation.

Together Tutorial -- Part 3

http://localhost/3activitydiagrams.html (1 of 9) [5/3/2001 3:48:50 PM]

Begin this step with the New diagram icon ()
on the main toolbar.

You'll have to enter the name in the textfield at
the upper right of the dialog window. (If you
didn't begin from the package diagram, select
ProblemDomain from the Package pick list.)

Together will be able to use the description you
fill in when it generates documentation.

If you clicked include in current diagram, the
ProblemDomain package diagram should show
a node that is a shortcut to the activity diagram.

Together Tutorial -- Part 3

http://localhost/3activitydiagrams.html (2 of 9) [5/3/2001 3:48:50 PM]

You will find the following eight activity diagram toolbar buttons useful for the steps on this page.

Swimlane Transition

Start Horizontal fork

Stop Vertical fork

Activity Decision

Organizing activities, start and stop states with swimlanes

Let's divide making a request into three pieces.

Airplane/Flight Description for the capacity of the airplane●

Flight Reservations for the list of reservations on this flight●

Reservation/Ticket Services for creating reservations and issues tickets●

Keep in mind that the swimlanes are often not associated with classes or objects -- especially since business modeling frequently precedes class diagram design!

Step: Make three swimlanes in the diagram.

Airplane/Flight Description on the left1.

Flight Reservations in the middle2.

Reservation and Ticket Services on the right.3.

To create a swimlane, click the swimlane button () on the Diagram toolbar, then click the
diagram.

You can change a swimlane name by clicking on the name to bring up the in-place editor.

The resulting diagram is pretty simple at this point.

Together Tutorial -- Part 3

http://localhost/3activitydiagrams.html (3 of 9) [5/3/2001 3:48:50 PM]

Step: Put a start state at the top of the activity diagram (above the swimlanes) and put a stop state below the swimlanes.

This step is easy: click start-button then click diagram; click stop-button then click diagram.

Creating activities and transitions

The initial activity for the activity diagram will be receiving a reservation request.

Step: Create an activity named Receive request and put it inside the Flight Reservations swimlane. Link the start to the activity
with a transition.

Creating activities on activity diagrams is analogous to creating use cases on use case diagrams. Start with the activity
button on the toolbar (). You can move activities around. You can edit them with the in-place editor.

Activity diagram transitions are analogous to use case diagram communications. When you click the toolbar transition
button (), Together puts halos around potential sources and targets for the transition as you pass the cursor them.

At the right is a snapshot of making the transition from the start point to the activity.

Step: Create a five more activities:

Get capacity (cap) -- Airplane/Flight Description swimlane1.

Get #tickets -- Flight Reservations swimlane2.

Create reservation-- Flight Reservations swimlane3.

Refuse request -- Flight Reservations swimlane4.

Issue ticket -- Reservation/Ticket Services swimlane5.

The Ctrl+click technique works for creating multiple activities the same as for creating multiple use cases. When you Ctrl+click the button to place a new activity

Together Tutorial -- Part 3

http://localhost/3activitydiagrams.html (4 of 9) [5/3/2001 3:48:50 PM]

on the diagram, you can edit the activity in place and then click again to create another new activity.

Once you create an activity, you can drag it to any swimlane (or even outside swimlanes entirely).

Changing flow of control with forks, joins, and decisions

Before our airline can make a reservation, it checks to see if the flight has room. That's where the business rule comes in. Get capacity and Get #tickets can be
performed in either order. But they both have to be completed before the remaining activities can begin.

Step: Create a fork. Make a transition from Receive request to the fork. Then make transitions from the fork to Get capacity
and to Get #tickets.

The fork buttons on the diagram toolbar give a choice of horizontal forks () or

vertical forks (). Which you choose depends only on how you want the diagram to

look.

A fork can be a source or a target of a transition ().

Be sure to look for the halo when you draw a transition to a fork. Forks are so slim that it is easy to miss a target fork and land on a swimlane instead. If you
try to end a transition on a diagram entity that is not a valid target, Together writes a red error message in the Message pane, and it displays an error box like the
one below.

Step: Create a join. Then make transitions from the Get capacity and to Get #tickets to the join.

The join button is the same as the fork button. You can choose either the horizontal or vertical version. Again, which you choose depends only on how you want
the diagram to look.

Step: Make a decision node to compare the number of tickets to the capacity of the airplane. Make a transition from the join to
the decision. Then make a transition from the decision to Create reservation and another transition to Refuse request.

Together Tutorial -- Part 3

http://localhost/3activitydiagrams.html (5 of 9) [5/3/2001 3:48:50 PM]

The decision button is the diamond () on the

diagram toolbar.

To get the snapshot on the left, we set our Diagram Options to show rectilinear links. The options can
be set from the Main menu under Options|Diagram.

The transitions out of the decision will be complete when they're labeled with guard conditions to indicate which transition applies.

Step: Put guard conditions on the transitions out of the decision as follows:

#tkt < c on the transition to Create Reservation●

#tkt >= c on the transition to Refuse request●

Set the requirement type to business rule. And fill in a descriptive comment to be used later for project documentation.

Transitions have inspectors that you can access from their speedmenus. Right
click on the transition line and you'll get the properties inspector at the right.

The link properties inspector has a Link tab with a textfield for the guard
condition. The Req tab has a textfield for business rules. The Description tab
has a textbox for descriptions.

Together Tutorial -- Part 3

http://localhost/3activitydiagrams.html (6 of 9) [5/3/2001 3:48:50 PM]

Step: Put in a second decision. Make four transitions:

from Create reservation to the new decision.1.

from the new decision to Issue ticket. Put a guard condition on the transition: ticket now2.

from the new decision to stop. Put a guard condition on the transition: ticket later3.

from Refuse request to stop.4.

from Issue ticket to stop.5.

Guard conditions appear on the diagram in square brackets. You can change a diagram by dragging guard conditions or
activities.

Below is a picture of our completed activity diagram.

Together Tutorial -- Part 3

http://localhost/3activitydiagrams.html (7 of 9) [5/3/2001 3:48:50 PM]

Tips and Tricks

Activity diagrams are fancy flow charts. Use them to spell out the details of potentially complicated or arcane business rules.●

Together makes no direct connection between code and activity diagrams. Activity diagrams are useful for sketching out the flow of activities. They need
not spell out exact messages, message sequencing, or control structures.

●

When Together cannot determine where you want a transition to end, it will put up a "Choose Destination" dialog box giving you a choice of possible
endpoints.

●

The Options|Diagram command on the Main menu lets you change the links from rectilinear to direct.●

Almost all diagram elements have speedmenus. Access to a speedmenu is always the same -- right click on the element.●

The speedmenu for a transition can be accessed through the transition or any diagram annotation on the transition (such as a guard condition).●

Together Tutorial -- Part 3

http://localhost/3activitydiagrams.html (8 of 9) [5/3/2001 3:48:50 PM]

Copyright © 2001 TogetherSoft, Inc. All rights reserved.

Last revised: Thu, Apr 12, 2001

Together Tutorial -- Part 3

http://localhost/3activitydiagrams.html (9 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial
Part 4: Diagrams and Classes

We have already created a new project and organized our work with packages. And we've sketched out some requirements with use cases. In this section, we'll
put some flesh on the problem domain package by creating classes.

Some of the tasks for this section are designed to illustrate Together's LiveSourceTM always-in-sync technology. It's one of the hallmarks of Together that never
fails to impress. Have fun!

Contents:

Creating new classes●

LiveSourceTM technology●

Editing source code outside of Together●

Adding attributes●

Adding operations●

Changing class properties●

Tips and Tricks●

Creating new classes

Here are the initial requirements of the airline project.

Make a reservation.●

Buy a ticket.●

Determine if a flight has room for more reservations.●

Find the total ticket revenue for a flight,●

From those requirements, we came up with five problem domain classes. We've listed them here along with some of possible attributes and operations. This is
just a start. As we go along, we may find the need for additional classes and members.

Class FlightDescription ScheduledFlight Reservation Ticket Agent
Attributes departureTime

arrivalTime
origin
destination
capacity

date name basePrice name

Methods getCapacity()
setCapacity()

makeReservation()
numberOfTickets()

ticketPurchased()
calcPrice()

calcPrice() makeReservation()

You'll want to begin your work by bringing the ProblemDomain package into focus in the Diagram pane.

Together Tutorial -- Part 4

http://localhost/4classes.html (1 of 10) [5/3/2001 3:48:53 PM]

Step: Create five classes in the ProblemDomain package: FlightDescription, ScheduledFlight, Reservation, Ticket, and
Agent.

Ctrl+click the class button on the Diagram toolbar () to create multiple classes. Name the classes in the diagram as you go along. There's no need to write any
class declarations -- Together generates them automatically.

As you create the classes in the Diagram pane, the Editor
pane displays the new code.

If you go to the <default> diagram, you'll see that the
ProblemDomain package now shows the new classes.
Changes in one diagram often create changes in related
diagrams.

Below is a picture of the ProblemDomain package node.
The + beside each name indicates that the class is public.

Together has now generated source files for the classes in the physical directory of the package. The Explorer Model tab tracks the new classes as part of the
current project.

Note: While this project won't have any inner classes, they're easy to create. Simply drag one class inside another. Or you can click the class button from the
toolbar and then click inside the outer class on the Diagram pane.

LiveSourceTM always-in-sync technology

Together uses your source code to construct its diagrams. It does not keep a repository. When you make legitimate code changes, the diagram shows those

Together Tutorial -- Part 4

http://localhost/4classes.html (2 of 10) [5/3/2001 3:48:53 PM]

changes... and vice versa. In this section and the next, we'll show you how to change some elements of your project just to see Together's LiveSourceTM

technology at work.

Step: Use the Diagram pane to rename the ScheduledFlight class to Flight.

Use the class speedmenu to change a class name. Or simply double-click on the name in
the Diagram pane.

Together updates code, filename, and diagram.

If you open the <default> diagram, you'll
see that Together has updated the class
name in the ProblemDomain package
node.

Step: Use the ProblemDomain speedmenu in the <default> diagram to rename ProblemDomain to AirlinePD.

Use the ProblemDomain speedmenu in the <default> diagram to rename the package. The snapshot below points out four changes that Together makes as a
result. The Explorer Directory tab shows that the physical directory is renamed as well.

Together Tutorial -- Part 4

http://localhost/4classes.html (3 of 10) [5/3/2001 3:48:53 PM]

Editing source code outside of Together

Together does not force working in a particular fashion. You can edit all of your source code in your favorite editor at the same time you manage your project
within Together.

The Tools|External Editor command on the class speedmenu gives
a quick way to open the source file in an external editor.

You can get to the class speedmenu through the Diagram pane or
Explorer pane.

Step: Open FlightDescription.java in an external editor. Add two String fields, origin and destination, and then save the file in
the editor.

Notepad is the default external editor for Windows. (That's easy to change in the Project options. Look at the Tools menu.)

Together Tutorial -- Part 4

http://localhost/4classes.html (4 of 10) [5/3/2001 3:48:53 PM]

We opened FlightDescription.java in Notepad and entered the origin and destination declarations.

When we saved our source file in Notebook, Together updated the
diagram. Together also updated the source file in its Editor pane view.

Together updates its Editor and Diagram views when the time stamp on
a source file changes.

Adding attributes

It is often quickest to add members to a class through its Diagram pane node.

Step: Go to the Diagram pane to add a name (type String) to Reservation.

To add a new attribute to a class, select the class in the Diagram pane and choose New|Attribute from the class speedmenu. (Or simply use the keyboard
shortcut, Ctrl+A.)

The new member gets a default name (attribute), type (int), and visibility (private). You can immediately change all those by
in-place editing on the diagram node. (Selecting the member on the diagram then clicking on it activates the in-place editor.)

If you fill in just a new name and press Enter, then the name changes but the default attribute type (or operation return type)
and visibility level remain.

Of course, Together keeps diagram and code in sync, automatically adding the declaration to the source code. The snapshot
below shows the results in the Editor pane.

There are several ways to add attributes to a class through the Diagram pane.

If a class already has an attribute and you want to add more, select the attribute and then press the Insert key.●

If a class has an attribute that you want to duplicate within class, select clone from the attribute speedmenu and then edit the result.●

Together Tutorial -- Part 4

http://localhost/4classes.html (5 of 10) [5/3/2001 3:48:53 PM]

Select an attribute and copy it via its speedmenu. Then paste it into another class using the speedmenu for that class.●

Move an attribute from one class to another using drag-and-drop. When you drag the attribute to a valid destination class, you'll see a blue halo around
the class.

●

Copy an attribute from one class to another through Ctrl+drag-and-drop.●

You can drag-and-drop attributes within a class to reorder them.

Step: Edit three properties of the name attribute of the Reservation class.

Initialize the value to the null string.1.

Set the "requirement description" to Last name first.2.

Set the author to your name.3.

The snapshot below shows that editing attributes can generate Javadoc comments as well as code.

You can edit class member properties through their inspectors. (You
need to select the class member and not the entire class in this case.)

Set the initial value of an attribute on the Properties tab of the
inspector.

●

Set requirement types and descriptions on the Req tab.●

Once you've completed the edits, press Ctrl+Enter. This saves the
changes and closes the inspector.

Step: Put additional attributes in the five AirlinePD classes. Use the Diagram pane rather than the editor to enter the new
attributes.

Agent: name (copy it from the Reservation class)1.

FlightDescription: departureTime, arrivalTime (Wait on capacity for the next section.)2.

Flight: date3.

Ticket: basePrice4.

Together puts vertical scrollbars on class nodes in the Diagram pane that are too small to show all of their members.

You can resize a class node by grabbing the handles around its border and dragging. Invoking "Actual Size" from its speedmenu
auto-resizes the class node and displays all members.

Want to change the ordering of class members? Use drag-and-drop to reposition them.

Together Tutorial -- Part 4

http://localhost/4classes.html (6 of 10) [5/3/2001 3:48:53 PM]

Adding operations

The same techniques for adding new attributes apply to adding new operations. The keyboard shortcut is Ctrl+O.

Step: Add a new void operation named makeReservation to the Flight class. Give the operation two parameters: a String for
the name of the passenger and an int parameter for the kind of ticket.

The in-place editor for an operation on a diagram node takes input in UML style (type follows name) or Java/C++ style (name follows type). The table below
illustrates the difference.

Style Format Example

UML name(parameters):type myMethod(myParameter:int):double

Java/C++ type name(parameters) double myMethod(int myParameter)

The default visibility for attributes is private. The default visibility for operations is public. You can change the visibility of a member with the in-place diagram
node editor, in the inspector, or in the source code.

Step: Use the Diagram pane to copy makeReservation() from Flight to Agent.

To copy an operation from one class to another, use Ctrl+drag-and-drop or "Copy" from the operation speedmenu and "Paste" from the speedmenu of the target
class. The Diagram pane copy duplicates the entire operation from one class to another, including its body.

Step: Add these operations to the Reservation class.

constructor with a String parameter and an int parameter●

ticketPurchased() returns a boolean●

calcPrice() returns a double●

The class speedmenu has a New|Constructor command that you can use to create the Reservation constructor.

You will eventually use two other items on this speedmenu: New|Property and New|Member by Pattern. (The snapshot
shows that it is possible to create inner classes via the speedmenu. You can do the same thing by dragging a class inside the
intended outer class.)

Step: Add these operations to the Flight, Ticket, and FlightDescription classes.

Flight - numberOfTickets() returns an int●

Ticket - calcPrice(). Copy it from the Reservation class.●

Together treats attributes with corresponding getter and setter operations as properties.

Step: Use the FlightDescription speedmenu to add capacity as a property.

Together Tutorial -- Part 4

http://localhost/4classes.html (7 of 10) [5/3/2001 3:48:53 PM]

Begin this step by selecting Property from the class speedmenu.

When you create a property, Together automatically creates getter and
setter methods along with the code for their bodies.

The snapshot here shows the result of changing the default name from
property to capacity. Together makes several code changes:

The name of the getter changes to getCapacity.●

The return statement returns capacity (rather than property).●

The name of the setter changes to setCapacity.●

The body of the setter assigns to this.capacity.●

Together recognizes classes with getters or
setters as JavaBeans.

A JavaBean diagram node has a
characteristic tab on the upper left. Getters
and setters do not appear among the
operations. And the property attributes
move from the attribute compartment to a
properties compartment at the bottom of
the class diagram.

The Options menu has a check box to turn on/off JavaBean
recognition.

When you check Recognize JavaBeans off,
the properties appear as attributes and the
getters and setters appear as operations.

Properties and attributes have different speedmenus. Before trying the next step, make sure that Recognize JavaBeans is turned off.

Step: Use the capacity speedmenu to initialize it to 50.

Right click on a class member to get the speedmenu for the member (not the speedmenu for the class). The Properties tab of an attribute speedmenu has an
initial value field.

Together Tutorial -- Part 4

http://localhost/4classes.html (8 of 10) [5/3/2001 3:48:53 PM]

Changing class properties (aka color me pink -- or blue or green or yellow)

Step: Change the Ticket class:

Make Ticket an abstract class.1.

Make calcPrice() an abstract method.2.

You can make a class abstract by using its speedmenu or its property inspector. Check the Abstract box on. Use the same procedure to make
a method abstract.

Your Ticket node should now display its name and method in italics (as specified by the UML).

The class inspector can add a huge variety of model richness. The inspector is organized by tabs. Together translates some of the tab items into source code
(such as determining class visibility or setting the class node to be an interface). It translates other tab items into Javadoc comments within the source code
(such as those on the Javadoc and Description tabs).

Step: Give Flight the "moment-interval" stereotype.

The Properties tab of the class inspector has a stereotype field with a pull-down list. Moment-interval is one of the color stereotypes featured in Java Modeling
in Color with UML by Peter Coad et al.

Together colors a node with a "moment-interval" stereotype pink. Your Flight node should be pink.

The pink color is a characteristic of both "moment-interval" and "moment-interval-detail" stereotypes. The "role"
stereotype is yellow; "party", "place", and "thing" stereotypes are green; and the "description" stereotype is blue.

Together does not limit stereotypes to the choices in the pull-down list ... you can type in anything you want. And you
can customize your stereotype to your own color via the class inspector View tab.

Step: Add color stereotypes to the rest of the classes:

FlightDescription: description●

Reservation: mi-detail (moment-interval detail)●

Ticket: thing●

Agent: role●

When you finish with that last step, your diagram ought to come alive in four colors!

Tips and Tricks

Keyboard shortcuts make adding new class members speedy -- Ctrl+A for attributes and Ctrl+O for operations.●

You can move a member from one class to another merely by dragging it from one class node to the other.●

You can copy a member from one class to another by Ctrl+dragging it.●

Attributes and operations appear in a diagram node in the same order that they appear relative to each other in the code. You can change the position of a
member by dragging it within the node.

●

If you change a class or package name in a diagram, Together will change the file names and package statements accordingly. If you change a class name●

Together Tutorial -- Part 4

http://localhost/4classes.html (9 of 10) [5/3/2001 3:48:53 PM]

in the editor instead, Together assumes you are the expert responsible for changing the corresponding file names and package statements.

You can initialize an attribute by editing the source code or by specifying an initial value in the attribute's properties inspector.●

Most activities in Together can be done in different ways. For example, you can enter a property through the class speedmenu, by adding the attribute and
then the getter and setter operations, or by editing the source code directly.

●

Copyright © 2001 TogetherSoft, Inc. All rights reserved.

Last revised: Thu, Apr 12, 2001

Together Tutorial -- Part 4

http://localhost/4classes.html (10 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial
Part 5: Classes and Associations

In the previous part of the Together Tutorial, you created some classes. But it's a pretty weak class diagram that has no associations. In this part, you will
remedy that. You will create associations linking the five classes that you've created so far. You will label some of the associations and put on multiplicities.

At the end of this part of the Tutorial, you will create an interface and two subclasses. And you'll connect them to existing classes via generalization and
implementation links.

Contents:

Creating associations●

Modifying associations●

Changing a link to an aggregation●

Showing inheritance relationships●

Creating and implementing interfaces●

Adding notes to diagrams●

Tips and Tricks●

Creating associations

You'll be working in the AirlinePD package. Open its diagram in the Diagram pane.

Step: Create an association from Flight to FlightDescription.

Begin this step by clicking the association button () on the Diagram toolbar.
Associations are handled the same way as linking elements in other diagrams. As
you pass the cursor over valid client (start) and supplier (end) nodes, Together puts
a halo around them.

Drag the cursor from Flight to FlightDescription and release. The Diagram pane
will show the new association as a blue line.

If you look in the Editor after creating the association, you'll see that Flight has
member named lnkFlightDescription.

Note that lnkFlightDescription does not appear in the Flight node of the Diagram pane. Together considers any attribute whose name begins with lnk to be an
"Automatic" link, and it will not show it in a class node of the Diagram pane unless you reset the diagram options. (If you want the new link member to show as
an attribute, you can change its name to begin with something besides lnk.)

Step: Create two more associations:

From Reservation to Ticket1.

From Agent to Flight2.

Together Tutorial -- Part 5

http://localhost/5associations.html (1 of 6) [5/3/2001 3:48:55 PM]

Together gives a choice of link display:

rectilinear: the link is a sequence of horizontal and vertical line segments.●

direct: the link is a line segment, but it may be slanted. (The link may also be a sequence of line segments with any slope).●

Link displays are set on the diagram options, accessible via Options|Diagram on the Main menu.

Most links go from one class to another. But some can be self-links, starting and ending at the same class. You can put a self-link in our model to distinguish
between a flight plan and an actual flight.

Step: Make the diagram link display to be Direct. Then draw a self-link on Flight.

Below is a snapshot of the diagram so far.

Modifying associations

Association links are Together objects with their own speedmenus and inspectors. For many modifications, you can use either speedmenu or inspector.

Step: Put cardinalities on the link from Flight to FlightDescription.

0..* at the client end (Flight)●

1 at the supplier end (FlightDescription)●

Together Tutorial -- Part 5

http://localhost/5associations.html (2 of 6) [5/3/2001 3:48:55 PM]

The link speedmenu varies according to which end is closer to the cursor. To target the end of a link in order to assign it a
cardinality or a role, right-click on the link near that end.

The speedmenu lists the most commonly seen cardinalities. Frequently you can select the appropriate cardinality without
going to the link inspector.

Step: Assign appropriate cardinalities to the link connecting Reservation and Ticket using this rule:

A ticket must be associated with exactly one reservation, but some reservations may not have any tickets.

Assign cardinalities on the link from Agent to Flight using this rule:

An agent may know about many flights; a flight may be known by many agents.

The link inspector has a rich menu for modifying links. Use it to assign roles to the link ends and to make
the link directed.

Step: Assign a role and 0..1 cardinalities to each end of the self link on Flight and make it directed. Then name the ends:

Name the supplier role "actual."●

Name the client role "plan."●

For that last step, use the inspector for the Flight self link.

Changing a link to an aggregation

Every Flight has a collection of Reservations rather than just a single Reservation.

Step: Make an aggregation from Flight to Reservation.

This is an easy step. Create the association, starting at Flight and ending at Reservation. Then bring up the speedmenu of the new association and
check the Aggregation box on.

The link should now show with a diamond at the Flight end.

Making a new association has the potential of cluttering the diagram. You can get Together to rearrange the diagram with the diagram speedmenu (Layout|All).
Or you can simply tweak the link directly.

When you select a link, the cursor changes to a cross (). Moving the cross reshapes the link. If you move the cursor to an end of the link, the cursor changes

shape to a 4-ended arrow(). At this point, you can move the endpoint of the link to a different class.

Showing inheritance relationships

You will now extend two concrete classes from Ticket, which is an abstract class. You'll also make an interface for the Agent and Reservation classes.

Together Tutorial -- Part 5

http://localhost/5associations.html (3 of 6) [5/3/2001 3:48:55 PM]

Step: Create a class named Coach. Then complete these steps.

Link Coach to Ticket as a generalization.1.

Copy calcPrice() from Ticket to Coach.2.

Copy calcPrice() from Coach to Reservation.3.

Change the Coach stereotype to "thing."4.

Use the Generalization link button () to make Coach extend Ticket. When you copy the abstract operation to a concrete class, Together will make the copy
concrete in both the diagram and the source code.

Step: Make a copy of the Coach class and rename the copy FirstClass.

You can make a copy of a class using the Copy command on the class speedmenu followed by the Paste command on the diagram speedmenu. The new class is
identical to the old one except for its name. All constructors are copied with the new name. All of the links that start at the original class are copied. And all
Javadoc comments in the code are copied.

Step: Clean up the diagram:

Change the links to Rectilinear.●

Make the layout inheritance horizontal.●

For diagram-wide changes such as in the last step, you'll need to pull up the diagram options window. Go to Options|Diagram on the Main menu.

Creating and implementing interfaces

For the final task, assume that both Agents and Reservations need to be able to tell their names.

Step: Create an interface named INamed. Then complete these steps.

Give INamed a single operation, getName(), that returns a String.1.

Link Agent and Reservation to INamed.2.

The process for creating interfaces is identical to creating classes and packages. Just use the interface icon () on the Diagram toolbar instead of the class or
package icon. You can edit the name in place. Notice that Together shows names and operations of interfaces in italics.

The generalization button also serves for showing that a class implements an interface. (A class implementing an interface must define the operations in the
interface. Defer implementing getName() in Agent and Reservation until we discuss patterns.)

Adding notes to diagrams

You're almost finished with a first crack at the airline project. But put in one more item before going on, a note to explain the business rule for making a
reservation:

"You can make a new reservation on a flight if the number of tickets already sold is less than the flight capacity."

Step: Put a note on the AirlinePD class diagram to show this business rule. Then set the note type to business rule.

Together Tutorial -- Part 5

http://localhost/5associations.html (4 of 6) [5/3/2001 3:48:55 PM]

Use the note button () on the Diagram pane toolbar -- enter the text directly in the note
node on the diagram. When you're finished, link the note to the Flight class via the note link
button ().

You can set the type of the note on the Req tab of the Properties inspector of the note, as
shown here on the right.

Below is a snapshot of our AirlinePD class diagram after we created the note. The links are
rectilinear. The layout inheritance is horizontal.

Tips and Tricks

Together will clean up diagram geometry when you select Layout|All from the Diagram pane speedmenu.●

If you're unhappy with the any change, whether it's from moving diagram elements, creating or deleting elements, or changing code. You can always use
the undo button. There are multiple levels of undo. And if you change your mind in the middle of an undo, click the redo button.

●

The undo and redo buttons have flyovers that describe the action that will be undone/redone.●

Together Tutorial -- Part 5

http://localhost/5associations.html (5 of 6) [5/3/2001 3:48:55 PM]

Having trouble making a self link show on a diagram? Change the diagram layout from rectilinear to direct.●

If you copy an operation from an interface or abstract class to a concrete class, it will be copied as a concrete method. If you copy a method from a class
to an interface, it will be copied as a method declaration (with no body).

●

If you want an association to appear in a class node, change its name not to begin with lnk. Alternatively, select Options|Diagram from the Main menu.
Then on the diagram tab, select Associations|Show as attributes|All.

●

To show all links as directed, select Options|Diagram from the Main menu and then pick Associations|Draw Directed|All.●

Copyright © 2001 TogetherSoft, Inc. All rights reserved.

Last revised: Thu, Apr 12, 2001

Together Tutorial -- Part 5

http://localhost/5associations.html (6 of 6) [5/3/2001 3:48:55 PM]

Together Tutorial
Part 6: Template Patterns

Patterns are perhaps the most powerful tool for code reuse today. Patterns can be used to create new classes or members. They can also be applied to existing
classes and members.

Together has two different kinds of pattern support: template patterns and "module" patterns. Templates are useful for simple classes as well as links or
attributes. Modules are typically used for more complicated design patterns such as GoF design patterns or Coad class patterns.

This part of the Together Tutorial will focus on template patterns. At the end, we will show how to create your own class template pattern.

Contents:

Choosing class member patterns●

Applying patterns to links●

Applying class template patterns●

Making your own template patterns●

Tips and Tricks●

Choosing class member patterns

There are two built-in class member patterns: Stub Implementations and Properties. Stub Implementations put dummy return statements in non-void operations.
Properties create attributes with getters and setters.

Step: Apply the Stub Implementation pattern to three methods:

Coach.calcPrice()1.

Reservation.ticketPurchased()2.

Flight.numberOfTickets()3.

Then copy calcPrice() from Coach to FirstClass. (Don't change Reservation.calcPrice(). We're saving the implementation of
that operation for later.)

Together Tutorial -- Part 6

http://localhost/6patterns.html (1 of 11) [5/3/2001 3:48:58 PM]

To apply the stub pattern, start with Choose Pattern from the operation speedmenu.

Together will open a Pattern window that lists member and link patterns. The only choice for
operation patterns is Stub Implementation.

The editor will show the result.

Step: Apply the Property pattern to Reservation.name() and Agent.name(). Give each property a get method but not a set
method.

Again, start with the member speedmenu to apply a pattern. When you select Properties from the list of patterns, the right side of the Pattern window lets you
change the Name, the Type, and whether the property has a getter, setter, or attribute.

Together Tutorial -- Part 6

http://localhost/6patterns.html (2 of 11) [5/3/2001 3:48:58 PM]

If you change the text in the Name textfield, Together will change the name of the attribute and methods. If you uncheck the Attribute box, Together will
remove the attribute altogether.

If you want to create an new property from scratch rather than use an existing member, use the Member by Pattern option on the class speedmenu.

Applying patterns to links

Together Tutorial -- Part 6

http://localhost/6patterns.html (3 of 11) [5/3/2001 3:48:58 PM]

To the left is the part of the AirlinePD class diagram showing the association from Flight to Reservation. The UML
diagram shows only that the association is an aggregation. The diagram reveals nothing about the actual implementation.
Is the aggregation coded as a collection, an array, a vector, a hash table?

It is up to the programmer to choose the appropriate code. Link patterns give some help.

Step: Apply the Aggregation as ArrayList pattern to the link from Flight to Reservation.

There are two ways to use a link pattern:

For an existing link, select Choose Pattern from the link speedmenu.1.

If the link does not exist, create a link by pattern. The link by pattern button () is on the Diagram toolbar.2.

In both situations, Together brings up the Association Pattern dialog box.

The Pattern selection pane of the dialog box lists many link patterns. For the last step, select Association as ArrayList from java.util collections.

The preview panel on the Association Pattern window indicates the code that Together will generate in the Flight class. (The actual code has an import
statement rather than fully qualified ArrayList type name.)

Applying class template patterns

It's time to create a Driver class with a main method. The Driver class belongs in the UserInterface package instead of AirlinePD. Before starting the next

Together Tutorial -- Part 6

http://localhost/6patterns.html (4 of 11) [5/3/2001 3:48:59 PM]

step, open UserInterface in a new tab.

Step: Create a shortcut (alias) to the Flight node in the UserInterface package diagram.

Start this step by going to the model view of the Explorer. Expand AirlinePD, then bring up the
Flight class speedmenu. Select Add as Shortcut.

The UserInterface diagram will show a new node, with
the shortcut symbol () in the lower left corner.

The Explorer pane shows the shortcut also. Look for a
Flight class with a shortcut symbol under UserInterface.

Step: Create a Driver class using the Main Class template.

The Class by Pattern button () is on the Diagram toolbar. (The three
dots at the bottom characterize pattern buttons.)

Placing a Class by Pattern in the Diagram pane brings up a pattern window
like the one shown here that we obtained.

We selected the Main Class pattern, then changed the name from the
default Class1 to Driver in the Name text field on the Parameters pane.

The Preview pane shows the code that Together generates.

Together Tutorial -- Part 6

http://localhost/6patterns.html (5 of 11) [5/3/2001 3:48:59 PM]

While the Main Class pattern may not seem like much of a time saver, some of the other choices might be more impressive.. For example, take a look at the
Bean, Applet, and Servlet class patterns.

Step: Make a link from the Driver node to the AirlinePD.Flight node. Then rename the link as myFlight.

That last step has nothing to do with patterns, but something to do with
views.

To the right are the Diagram and Editor panes that we generated. There are
two things to notice:

When we created the link, Together put the appropriate import
statement in our code.

1.

The Flight node does not show any of its members.2.

You can hide class members on a diagram node via the node speedmenu.

For the Flight node, checking Attributes and Operations is equivalent to
checking All.

Making your own class template pattern

Java class templates reside in the Together home folder under templates/JAVA/CLASS. Each folder in that directory contains two files:

%Name%.java, which is the template for the source1.

FolderName.properties, which establishes the properties for creating code and documentation2.

Together 5.0 has a Code Template Expert for creating new templates or modifying existing ones. The Expert will automatically create a folder for a new
template, placing inside the two files listed above.

Together Tutorial -- Part 6

http://localhost/6patterns.html (6 of 11) [5/3/2001 3:48:59 PM]

Step: Create an Exception template through the template expert.

Invoke the Code Template Wizard under the Main menu. Select Tools|Code Template Expert.

In the first two panes of the Code Template
Expert, select the Language, Category, and
New Template.

Pane 1: Select language and category
of desired code template.
Select as follows.
 Template Language: Java
 Template Category: Class

1.

Pane 2: Select the code template you
want to edit or create new code
template.
Click New Template.

2.

Enter Exception in the dialog box, then click
OK. Together puts you back at the same
pane.

Choose Exception from the scrolling list.
Then click Next to continue to Pane 3.

Step: Fill in the Exception details, beginning with the template documentation. The default name should be Exception1. Create
an appropriate description for the dialog box.

Together Tutorial -- Part 6

http://localhost/6patterns.html (7 of 11) [5/3/2001 3:48:59 PM]

The snapshot at the right shows our template so
far.

Default name: Exception1
Unless we enter a different name, the
name of any new class generated by the
template will be Exception1.

1.

Template description is documentation
for the template dialog box when the
Exception template is selected. (The
description is in HTML.)

2.

Step: Fill in the template definition, and finish the template.

Together Tutorial -- Part 6

http://localhost/6patterns.html (8 of 11) [5/3/2001 3:48:59 PM]

Pane 3 of the Code Template Expert has a window for
filling in the code.

Fill in the definition as illustrated here. You can
click on the %Name% button rather than typing
in the 6 characters. (The text in the Name field
will replace the %Name% macro in the definition
when the template is used.)

1.

Click Format Source after entering the source
code.

2.

Click OK when you are finished with the code.3.

Click Finish on the following pane to complete
your work.

4.

Step: Create an Exception class in the AirlinePD package named ReservationException.

Together Tutorial -- Part 6

http://localhost/6patterns.html (9 of 11) [5/3/2001 3:48:59 PM]

Go back to the AirlinePD package diagram to start this step.

When you click the Class by Pattern button () on the diagram
toolbar then the diagram, the pattern dialog box should show your
editing work. Select Exception as the pattern. The Description panel
has the HTML description from the properties file.

Enter the name ReservationException in the textfield of Parameters
panel. The Preview panel will show the code that Together will
generate as a result.

When you finish, the new ReservationException node will appear on
the diagram.

(We suggested creating an exception for this final set of exercises in order to satisfy the business rule described in the activity diagram. When a request for a
flight reservation is refused because the plane is full, Flight.makeReservation() can throw a ReservationException.)

Together Tutorial -- Part 6

http://localhost/6patterns.html (10 of 11) [5/3/2001 3:48:59 PM]

Tips and Tricks

Using the Diagram toolbar to create a class from a template is almost identical to using a speedmenu on an existing class or interface. With the
speedmenu, Together is often able to fill in a name from your existing code. (Using the Diagram toolbar is absolutely identical to using the Diagram
speedmenu to create a class, interface, package, or class by pattern.)

●

Shortcuts are aliases for the real thing. You can delete a shortcut from a diagram if you select it and press the Delete key. If you use delete on the shortcut
speedmenu instead, Together will remove the corresponding file (not just the shortcut).

●

It is as easy to make new link templates -- or modify existing link templates -- as it is to create new class templates. The Code Template Expert will step
you through! Just select Link instead of Class on the Expert's first pane.

●

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Fri, Mar 30, 2001

Together Tutorial -- Part 6

http://localhost/6patterns.html (11 of 11) [5/3/2001 3:48:59 PM]

Together Tutorial
Part 7: Refactoring with Class Patterns

In the previous part of the Together Tutorial, we discussed template patterns. It's time to consider the more complicated module patterns. The focus will be on
the Abstract Factory pattern, which is one of the 11 GoF patterns shipped with Together.

Together patterns are useful for automatic creation of code that is tedious to write. And they are also critical for refactoring code by reorganizing it. That is
exactly how you will use patterns in this section. But first, you'll start out with some unfinished business, coding our single business rule.

Contents:

Coding business rules●

Refactoring with a GoF pattern●

Putting the finishing touches on diagram and code●

Tips and Tricks●

GoF is an acronym for "Gang of Four." It refers to Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides, who are the authors of the classic book
Design Patterns, Elements of Reusable Object-Oriented Software.

Coding business rules

Let's write some simple code to generate a sequence diagram from Flight.makeReservation(). Our previous discussion on activity diagrams contains the
business rule that describes the code:

You can make a flight reservation if the number of tickets sold so far for the flight does not exceed the capacity of the airplane.

Together Tutorial -- Part 7

http://localhost/7classpatterns.html (1 of 8) [5/3/2001 3:49:00 PM]

Below is our code for Flight.makeReservation().

public void makeReservation(String name, int kind) throws ReservationException {
 int t = this.numberOfTickets();
 int c = lnkFlightDescription.getCapacity();

 // Make a reservation only if the number of tickets sold is less than the plane capacity
 if (t < c) {
 Reservation r = new Reservation(name,kind);
 lnkReservation.add(r);
 }
 else throw new ReservationException();
}

Step: Complete the coding of Flight.makeReservation().

Together Tutorial -- Part 7

http://localhost/7classpatterns.html (2 of 8) [5/3/2001 3:49:00 PM]

You can do this step by copying and pasting from browser to Together.
However, if you enter the code for makeReservation() by hand, you're
likely to see the Together editor code completion at work.

This snapshot shows code completion for the expression
lnkFlightDescription.

The Reservation constructor is still just a stub. Let's use its two parameters, name and tkind. The name is easy. But tkind takes some thought. For now,
simply go by this:

If tkind is 1, create a Coach class ticket. If tkind is 2, create a FirstClass ticket. Otherwise, do not create a ticket at all.

Step: Fill in the code for the Reservation constructor.

Here is the code for our Reservation constructor.

public Reservation(String name, int tkind) {
 this.name = name;

 // We will refactor this next piece of code
 lnkTicket = null;
 if (tkind == 1)
 lnkTicket = new Coach() ;
 else if (tkind == 2)
 lnkTicket = new FirstClass();
 }

Refactoring with a GoF pattern

Look ahead now to a time when the airline project might be much more extensive. The code for determining which kinds of tickets are purchased lies
completely within the Reservation constructor. A natural improvement is to factor out that ticket creation into a new type of object, a factory that creates
tickets.

In this section, you will make a TicketMaster class for creating actual Tickets. The Abstract Factory pattern from the GoF collection will do the hard work.

Step: Bring up the dialog for class by pattern using the Abstract Factory from the GoF collection.

Together Tutorial -- Part 7

http://localhost/7classpatterns.html (3 of 8) [5/3/2001 3:49:00 PM]

Select the Class by Pattern button () on the Diagram toolbar then click on the Diagram pane. That brings up a
dialog box with a pattern-picker pane on its left. Expand the GoF folder to see the 11 pattern choices.

Abstract Factory is the first GoF pattern listed. Together forces you to specify the details of the Abstract Factory
before it will create new code. As you click on Abstract Factory to select it, Together displays a red warning
message at the bottom of the pane:

Product (AbstractProduct) for Factory (ConcreteFactory) is not defined.

It's time to name the Abstract Factory details.

Step: Name Abstract Factory, Concrete Factory, and Abstract Product as follows:

ICreateTickets for Abstract Factory●

Ticket for Abstract Product●

TicketMaster for Concrete Factory●

Fill the names for the pattern details in the upper right pane of the dialog box. You'll
have to type in ICreateTickets and TicketMaster directly since they do not yet exist.

You can type in the name Ticket, or you can opt to use the select box at the right of the
Abstract Factory text field instead ().

At this point, the pattern is not complete. There's still an error message at the bottom of the pane:

Product (Ticket) for Factory (TicketMaster) is not defined.

Step: Designate Ticket for the Product and finish the pattern.

Together Tutorial -- Part 7

http://localhost/7classpatterns.html (4 of 8) [5/3/2001 3:49:00 PM]

Click the Next button at the bottom of the Choose Pattern window to begin this step. The next pattern window has a text field for entering
the product.

Clicking on the select box in that window brings up a Select element window like the one shown below.

To choose the product, expand Model, then AirlinePD. Then select the Ticket class, and click the OK button.

At this point, there should be no red error messages. Click the Finish button to complete creating the pattern.

Putting the finishing touches on diagram and code

Creating a pattern can result in a pretty messy diagram, especially if new classes or interfaces are generated in the process. You now have a bunch of new

Together Tutorial -- Part 7

http://localhost/7classpatterns.html (5 of 8) [5/3/2001 3:49:00 PM]

dependencies plus the TicketMaster class and the ICreateTickets interface.

Step: Rearrange the AirlinePD diagram to show the overall model shape.

This is an easy step. Bring up the diagram speedmenu and
select Layout|All.

Below is our snapshot from the Overview tab of the Explorer
pane. The corresponding Diagram pane is at the right. (Our
links are rectilinear.)

At this point, the code is almost complete, but not quite. Remember that we originally wanted to factor the code for creating a Ticket out of the Reservation
class and into TicketMaster. That describes your next steps.

Step: Change the ICreateTickets operation to take an int parameter and make the corresponding change in TicketMaster.

This takes two easy mini-steps:

Change the operation in ICreateTickets by using the in-place editor:

createTicket(tkind:int):Ticket

1.

Ctrl+drag the operation from ICreateTickets to TicketMaster. Delete the original TicketMaster.createTicket() that has no parameter.2.

Step: Move the Ticket creating code from Reservation to TicketMaster and correct the syntax.

You can move the original code by cutting and pasting in the Editor pane. But the code won't compile immediately after that. You'll need a couple of minor
changes -- declare a Ticket variable at the beginning and return it at the end.

We renamed our Ticket variable t (rather than lnkTicket), as shown below.

Together Tutorial -- Part 7

http://localhost/7classpatterns.html (6 of 8) [5/3/2001 3:49:00 PM]

public Ticket createTicket(int tkind) {
 Ticket t = null;
 if (tkind == 1)
 t = new Coach() ;
 else if (tkind == 2)
 t = new FirstClass();
 return t;
 }

It would be a fine idea to document those magic numbers 1 and 2 (or better yet, get rid of them altogether). But we'll leave that to your discretion.

Step: Complete the Reservation constructor so that it uses a TicketMaster to create the appropriate kind of Ticket.

Here is our new, improved Reservation constructor.

public Reservation(String name, int tkind) {
 this.name = name;

 TicketMaster tm = new TicketMaster();
 lnkTicket = tm.createTicket(tkind);
 }

Step: Check your work by compiling your code. Fix all syntax errors. (They should be minor if any.)

Make and build commands are on the Main menu under Tools as well as on the main toolbar. You can also find them on the Builder tab
of the Message pane. Compiler output messages are on the Message pane.

If you have errors, you can click on the error message to highlight the bad code in the Editor pane. Be sure to fix your code before
continuing the tutorial.

Tips and Tricks

There are other GoF patterns that are appropriate for this project. For example, the Composite pattern gives be an easy way to allow for group or
individual reservations.

●

Select several classes at a time in the Diagram pane by left-click-drawing a rectangle that touches all of them. Once they are selected, you can move them
as a group.

●

Ctrl+drag to copy an operation from an abstract class or interface to a concrete class. Together makes the resulting operation concrete.●

Use the Diagram pane to navigate in the Editor. For example, if you want to copy statements from one method to another, navigate to the source by
clicking its method in the Diagram. Then copy the code with the usual commands. Then navigate to the target method via the Diagram pane and copy.

●

Together Tutorial -- Part 7

http://localhost/7classpatterns.html (7 of 8) [5/3/2001 3:49:00 PM]

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Mon, Apr 9, 2001

Together Tutorial -- Part 7

http://localhost/7classpatterns.html (8 of 8) [5/3/2001 3:49:00 PM]

Together Tutorial
Part 8: Sequence Diagrams

The class diagram gives the overall shape to a model. But it's a static diagram, independent of activity within the model. In this part of the Together Tutorial,
you will create some sequence diagrams to show how activities occur.

Together can generate sequence diagrams from actual code. And it will generate code from sequence diagrams, including:

Class declarations.●

Operation declarations.●

Statements in methods that do not yet contain any statements. (Done on explicit request only.)●

This part of the tutorial will cover generating code and sequence diagrams. At the end is a discussion on how to create hyperlinks to tie together related project
entities.

Contents:

Creating a sequence diagram scratch pad●

Correlating generic objects with classes and messages with operations●

Putting control code on diagrams●

Implementing code from diagrams●

Creating diagrams from code●

Hyperlinking project elements●

Tips and tricks●

Creating a sequence diagram scratch pad

Begin your work by bringing the AirlinePD diagram into focus. The first sequence diagram will be for activity in the problem domain.

Step: From the AirlinePD package, create a sequence diagram named FindRevenue.

To create a new diagram, click the left most button on the Main toolbar (). Below is a snapshot of our new diagram dialog. We filled in a diagram description
as well as name.

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (1 of 13) [5/3/2001 3:49:04 PM]

The sequence diagram toolbar has five items of interest for the diagrams on this page.

An actor can start the message chain

An object receives and sends messages

● A message link between objects

● A self message call to a method on the same object

● A statement block for control statements (loops, etc.)

Step: Place an actor on the left side of the sequence diagram. Then put in three objects.

Together draws a dotted lifeline below each object except the actor, which has a narrow rectangle instead.

Step: Create a message from the actor to the Object2 lifeline.

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (2 of 13) [5/3/2001 3:49:04 PM]

You can drag a message from one lifeline to another. The action is similar to dragging an association from
one object to another on a class diagram and dragging a transition for activity diagrams.

When you finish this step, the target lifeline will have an activation bar (rectangle) starting at the point of the
arrow. (An activation bar can be lengthened, shortened, and moved along the lifeline.)

Together puts a halo around the valid source and target lifelines as you pass the cursor over them.

Step: Create a message from the activation bar on Object2 to the Object3 lifeline.

Make sure that you start that last message within the activation bar and not
below. Otherwise, you will get a new, separate activation bar on the Object2
lifeline.

Our sequence diagram snapshot shows strictly generic classes and messages,
completely unrelated to classes or operations in the class diagram.

Correlating generic objects with classes and generic messages with operations

You can convert generic objects to instances of existing or new classes. And you can make the generic messages correspond to actual operations on these
classes.

Step: Going left-to-right, select classes for each object (except the actor):

for Object2, choose Flight●

for Object3, choose Reservation●

for Object4, choose Ticket●

Then rename the right most object (from Object4 to lnkTicket).

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (3 of 13) [5/3/2001 3:49:05 PM]

Begin this step by using the object speedmenus. On the right is the speedmenu for
Object2. Choose Class lists the classes from the package of the sequence
diagram. (More at the bottom of the choices offers classes outside the package.)

After you pick the classes, your sequence diagram should show the three objects
and their activation bars in the pink and green stereotype colors.

The easiest way to change the name of an object through the
in-place editor.

Incidentally, the object speedmenu gives the option of creating a new class or interface. If you
select one of those, Together will generate the corresponding code (and change any
corresponding class or package diagram).

Step: Choose calcPrice() for the message from Flight to Reservation.

Right clicking on the message in the diagram brings up its speedmenu.

Choose Operation on the speedmenu gives a list of the available class
methods.

Step: Create a new operation for the generic message from the actor to the Flight object -- ticketRevenue():double.

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (4 of 13) [5/3/2001 3:49:05 PM]

The message properties inspector is near the top of the message speedmenu.

When you specify a new operation in the inspector, Together creates a dialog box like the one below. For
this problem, you should click the Create button.

If you rename an existing method, Together's dialog box has three buttons: Rename, Create, and Cancel.

Putting control code on diagrams

In this section, we will change the activation bar on the Reservation lifeline to represent finding the revenue from a single reservation:

"The revenue generated for a reservation is the price of the ticket if the reservation has been ticketed. If it has not been ticketed, the revenue is 0."

Step: Put a self message on the activation bar on the Reservation lifeline. Choose ticketPurchased() for its operation. Set the
return value to hasTicket.

The sequence diagram toolbar has a self-message button (). After you create the self-message,
choose ticketPurchased() as its operation.

For the remainder of this step, you'll need the properties inspector.

The return on the Link tab of the property inspector indicates the name of the value to be returned.
Together can use that information to generate code. For our case, the code that Together will
generate on demand is:

boolean hasTicket = this.ticketPurchased();

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (5 of 13) [5/3/2001 3:49:05 PM]

Step: Create two statement blocks on the activation bar on the Reservation lifeline.

Put an if statement block on the activation bar beneath the self message.1.

Set the if condition to hasTicket.2.

Put an else statement block beneath the if.3.

Clicking the statement block button () and then clicking the Reservation
activation bar brings up the dialog box here.

A statement block (such as an if) shows as a dark rectangle on
the activation bar. Statement blocks have speedmenus that you

can access by right-clicking statements or rectangles.

Set the if condition with
its inspector. The
condition goes in the
"statement expression"
textfield.

Step: Create a calcPrice() message from the if block to the Ticket.

Statement blocks, activation bars, and lifelines can be used for message starting and stopping points. For this step, be
careful to start the message inside the if block rather than elsewhere on the activation bar.

In our diagram, we pulled the if block down the activation bar to allow more room for annotations.

Implementing code from diagrams

Together will generate code for a method using a sequence diagram if the method has no code in its body to start. Before beginning the next step, remove any
return statement (or other code) that you may have placed inside the body of Reservation.calcPrice().

Step: Implement Reservation.calcPrice().

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (6 of 13) [5/3/2001 3:49:05 PM]

This is an easy step. After clearing out any code from the body of Reservation.calcPrice(), select
Generate Implementation from the sequence diagram speedmenu. You should get two messages in the
Message pane. The first for Reservation.ticketPurchased() and the second is for Ticket.calcPrice().

message #1.1.1 associated operation is not empty -- can't generate code1.

message #1.1.2.1 associated operation has no body-- can't generate code2.

Together will not generate any code for methods with non-empty bodies. Neither will it generate code for
abstract methods.

#1.1.1 is a message sequence number. You can get sequence numbers
from the message properties inspectors. You can also get them by
double clicking the messages in the diagram.

Below is the completed sequence diagram, with three messages in boldface. Together sequence diagrams put boldface type on messages that are invoked as a
result of creating code via Generate Implementation.

Sequence diagrams can give structure to code. But it's up to you to finish the details. Below is the incomplete code for Reservation.calcPrice().

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (7 of 13) [5/3/2001 3:49:05 PM]

public double calcPrice(){
 // message #1.1.1 to this:AirlinePD.Reservation
 boolean hasTicket = this.ticketPurchased();
 if (hasTicket) {
 // message #1.1.2.1 to lnkTicket:AirlinePD.Ticket
 double cost = lnkTicket.calcPrice();
 }
 else { }
}

You can correct the code with two return statements:

Put a return statement inside the if statement block: return cost;1.

Put a return statement in the else: return 0;2.

Step: Remove any syntax errors from Reservation.calcPrice() and Flight.ticketRevenue(). Correct logic errors as you see fit.

Creating sequence diagrams from existing code

Together can generate sequence diagrams from code that has no syntax errors. As a preliminary step to your next task, you should Make the project as an error
check.

Step: Generate a new sequence diagram from Flight.makeReservation(). Show every class from the AirlinePD package. But
don't show anything from java.util.

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (8 of 13) [5/3/2001 3:49:05 PM]

The option to Generate Sequence Diagram is on operation
speedmenus in class diagrams.

The snapshot to the right shows part of the speedmenu for
Flight.makeReservation().

The Generate Sequence Diagram Expert gives a choice of which
classes and implementation details to show. For our sequence
diagram, we checked off all the java.util items; we checked on all the
AirlinePD items.

Below is our sequence diagram. Its (default) name is Flight.makeReservation(1). Light rectangles are activation bars (corresponding to method calls). Dark

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (9 of 13) [5/3/2001 3:49:05 PM]

rectangle correspond to loop or conditional statements. The final four objects are lowered on the diagram to indicate that they are created as the reservation is
made.

Step: Generate a collaboration diagram from Flight.makeReservation(1).

Collaboration diagrams are equivalent to sequence diagrams. To switch from one to another, go to the diagram speedmenu. (Together maintains only one file
for the two diagrams, representing different views of the same information.)

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (10 of 13) [5/3/2001 3:49:05 PM]

Speedmenu for sequence diagram Speedmenu for collaboration diagram

Below is our collaboration diagram for Flight.makeReservation(1). (We moved the nodes around to make them fit in a smaller space.)

Hyperlinking project elements

Hyperlinks between Together objects (such as diagrams and diagram elements) can tie objects together and shortcut project navigation. When an object on a
diagram is hyperlinked to another, its name appears in blue.

When you create as sequence diagram from an operation, Together automatically hyperlinks the operation to the
sequence diagram. Look at your AirlinePD class diagram. The operation named Flight.makeReservation should be
blue because it's hyperlinked to the collaboration diagram Flight.makeReservation(1).

You can also create hyperlinks from one object to another directly via the object property inspector.

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (11 of 13) [5/3/2001 3:49:05 PM]

Step: Create a hyperlink from the Make a reservation use case (on the MakeReservation use case diagram) to these elements:

to the collaboration diagram Flight.makeReservation(1)1.

to the activity diagram, Request Reservation2.

to the Flight class on the AirlinePD class diagram3.

to the Agent class on the AirlinePD class diagram4.

Start at the MakeReservation use case diagram.

Right click the Make a Reservation use case to
bring up its speedmenu and properties inspector.
Then go to the Hyperlink tab in the inspector.

Right clicking on Element brings a Select Element
menu giving a choice of hyperlink items to add as
hyperlinks.

When you finish, the Make a Reservation use case
should display in blue font.

Step: Travel from the Make a Reservation use case to the makeReservation(1) diagram via the new hyperlink.

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (12 of 13) [5/3/2001 3:49:05 PM]

You can travel on the Make a Reservation use case hyperlinks via its
speedmenu. (The cursor does not change into a familiar hand when it is above a
hyperlinked element because there are several possible destinations.)

Use the forward () and reverse () arrows on the Main toolbar to travel back
and forth on hyperlinks.

Tips and Tricks

You can hyperlink from a Together element to items outside Together entirely. For example, you may want to hyperlink a use case to a requirements
document.

●

Sequence diagrams are tied intimately to code, but Together keeps code and sequence diagrams in sync only on demand.●

You can use the in-place editor for messages to change the name of the operation but not its return type.●

To create a new non-void operation for a message, use the message inspector rather than the top item on the speedmenu.●

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Thu, Apr 12, 2001

Together Tutorial -- Part 8

http://localhost/8sequencediagrams.html (13 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial
Part 9: Documentation Generation

Self-documenting code may be an oxymoron. But with Together, self-documenting projects become a reality. Together will generate documentation -- all kinds
of documentation, from HTML to RTF to PDF. The documentation is fully hyperlinked to show relationships among project entities. For anyone needing
customized documentation in a special format, Together even offers a powerful document designer.

In this part of the Together Tutorial we'll show you how to generate documentation. The discussion is short, in part because generating documentation is so
easy.

Contents:

Generating HTML documentation●

Generating documentation in RTF format●

Tips and Tricks●

Generating HTML documentation

Together uses Javadoc comments in code to keep track of properties of diagrams and diagram elements. It uses those Javadoc comments in creating
documentation as well.

Step: Generate HTML documentation for the entire airline project.

HTML documentation generation is a simple click of a
button. Select Tools|Documentation|Generate HTML
from the Main menu.

With the options button on the bottom of the dialog box,
you can specify a variety of settings:

Whether to include or exclude header tag
information (author, version, etc.)

1.

Special HTML options (window title, stylesheets,
etc.)

2.

The visibility levels of classes shown in the
documentation

3.

Together Tutorial -- Part 9

http://localhost/9docgen.html (1 of 6) [5/3/2001 3:49:08 PM]

The entire HTML document is hyperlinked, with both terms and image maps. When you click on an item in a class diagram, for example, its documentation
shows in the lower right frame.

Below is a snapshot of our documentation. The browser displays the resulting documentation in three frames. The top frame is a diagram. The lower left is an
applet with an explorer and overview tabs. The lower right frame has the written documentation.

Together Tutorial -- Part 9

http://localhost/9docgen.html (2 of 6) [5/3/2001 3:49:08 PM]

Notice that the business rule requirement on the note shows up as part of the documentation.

Generating documentation in RTF format

Together generates documentation in several formats: text, HTML, PDF, and RTF.

Step: Generate RTF documentation for the entire airline project.

Together has a template for documentation in RTF, accessible via the Main menu:

Tools|Documentation|Generate using Template.

The resulting dialog box has a familiar look.

Below is the first part of the first of 26 pages of documentation that Together generated.

Together Tutorial -- Part 9

http://localhost/9docgen.html (3 of 6) [5/3/2001 3:49:08 PM]

Together Tutorial -- Part 9

http://localhost/9docgen.html (4 of 6) [5/3/2001 3:49:08 PM]

Together ControlCenter lets you create your own documentation template. Look
at the Main menu under Tools|Documentation|Design Template.

On the right is snapshot of a new template in the documentation designer.

With the document designer, you can specify headers and footers as well as the
internal organization of the document.

Together Tutorial -- Part 9

http://localhost/9docgen.html (5 of 6) [5/3/2001 3:49:08 PM]

To get our screen snapshot above, we started with File|New Document Template in the Documentation Designer. Then we went through two steps:

We changed the first Element Iterator to Package via right-clicking its purple bar. Together lets you iterate over a large variety of types, from Activity
and Activity Diagrams to XML Structure Diagrams.

1.

We right-clicked the Static Section immediately below. The items on the Insert Control menu are described in the Together documentation:2.

Labels -- text labels❍

Images -- gifs, etc.❍

Panels -- for controlling presentation format❍

Formulas -- for data not available directly from the source❍

Data Control -- information that the report will actually display❍

Step: If you have Together ControlCenter, generate PDF documentation for the entire airline project.

Selecting Tools|Documentation|Print brings a dialog box with an option to create a PDF file. The dialog box has a convenient preview button.

Tips and Tricks

Together uses many of the items on properties inspectors in generating documentation.●

When you have a choice of files or folders, Together will show the "pick folder" icon (). Click it to access the file system.●

Hyperlinking is not restricted to HTML documentation. It is also part of RTF documentation.●

Printed diagrams alone are a source of documentation. You can see where page breaks would come by checking Show print grid on the View tab of
Diagram options. When you select Layout|All for Printing from a diagram speedmenu, Together will arrange not to split diagram items over page
boundaries when possible.

●

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Thu, Apr 12, 2001

Together Tutorial -- Part 9

http://localhost/9docgen.html (6 of 6) [5/3/2001 3:49:08 PM]

Together Tutorial
Part 10: Audits and Metrics

Together provides built-in quality assurance features to help enforce company standards and conventions, capture real metrics, and improve what you do. Two
features are specifically designed for quality assurance: audits and metrics. Audits check code for conformance to user-defined styles, maintenance and
robustness guidelines. Metrics calculate the complexity of the code.

Together has long supported audits for Java projects. And now, Together 5.0 supports C++ audits as well.

The airline project is the basis for discussion in this part of the Together Tutorial. For a richer example, turn to the Cash Sales project that ships with Together.

Contents:

Auditing your project●

Generating project metrics●

Tips and Tricks●

Note: This is an optional part of the tutorial. Only Together ControlCenter supports audits and metrics.

Auditing your project

Together will generate Audits and metrics only if the Quality Assurance module is
active. You can activate the module by checking on Quality Assurance from the
Options|Activatable Modules item on the Main menu.

Start the next step from the default package.

Step: Generate complete audits for the airline project.

Together Tutorial -- Part 10

http://localhost/10qualityassurance.html (1 of 7) [5/3/2001 3:49:12 PM]

Quality Assurance is listed on package
diagram speedmenus and the Tools
menu.

Auditing starts with a dialog box for
selecting audit standards.

For this audit, click the Select all button.
(You can also load sets of audits,
including the Sun code conventions for
Java, which are available from the
Load set button.)

The scrolling list of the Java Audit window has a Chosen and Fix columns. The Chosen column lets you select or deselect specific audits. Checking a box on
the Fix column instructs Together to change the source code to eliminate the problem. The upper right part of the Java Audit window lets you rank the standards
as Low, Medium, or High priority. The resulting audit table can be sorted according to that rank.

The lower portion of the Java Audit window documents each audit standard. For most items, the documentation shows examples of code that violate the
standard as well as equivalent code that adheres to the standard.

Generating audits on the airline project should be quick. Together brings up the results in a table in the Message pane.

Click on any column header to sort the table according to the entries in that column.●

Together Tutorial -- Part 10

http://localhost/10qualityassurance.html (2 of 7) [5/3/2001 3:49:12 PM]

Click on any entry to bring up its speedmenu. The description of each entry is a choice on the speedmenu.●

Double click any line in the table to bring up the corresponding code in the Editor menu.●

Step: Create an HTML document from the audit table.

The table speedmenu has an Export
command. For this step, choose
Export|The Whole Table.

Together brings up a dialog box for
selecting the file name and file type.

One of the HTML options copies
links to the descriptions of each
audit standard to the table. (Ours is
unchecked.)

Generating project metrics

Together Tutorial -- Part 10

http://localhost/10qualityassurance.html (3 of 7) [5/3/2001 3:49:12 PM]

You'll want to begin at the default diagram for the next step also.

Step: Generate all metrics for the airline project.

Metrics are available from the same menu
as Audits. From the diagram speedmenu,
select Quality Assurance|Metrics.

The dialog window should look familiar.
In the upper left is a list of the possible
metrics. For this step, you should click the
Select all button.

The panel in the upper right lets you select
the upper and lower limits for each metric.
The granularity can be according to class
or operation.

The lower panel documents each metric.

The resulting table in the Message pane is similar to the Audit table, with packages and classes marking the rows and metrics marking the columns. Each
column heading has a flyover box with it unabbreviated name.

Together Tutorial -- Part 10

http://localhost/10qualityassurance.html (4 of 7) [5/3/2001 3:49:12 PM]

Step: Find the description of Fan Out. Generate a bar graph for the Fan Out metric on the Cash Sales project.

The speedmenu for each column gives access
to a description of the column header.

The description window has two tabs, one for
the description itself and the other for a bar
graph.

Together Tutorial -- Part 10

http://localhost/10qualityassurance.html (5 of 7) [5/3/2001 3:49:12 PM]

Step: Reset these metric limits for the Cash Sales project.

CBO -- Coupling Between Objects -- (Upper Limit = 5)●

CR -- Comment Ratio -- (Lower Limit = 15)●

FO -- Fan Out -- (Upper Limit = 3).●

Generate the metrics. Then create a Kiviat graph for data_management.

You'll have to start from the beginning to reset the metric limits. The
upper right panel of the Metrics dialog box has fields for entering new
limits.

When you generate new metrics, the results will overwrite the original
ones in the Message pane. Numbers in blue (CR in our picture) are
lower than the lower limit. Numbers in red are higher than the upper
limit.

The speedmenu for each cell of the metrics
table has graph options. An interior cell (not
in the first column or first row) has an option
for both a Bar graph and a Kiviat graph.

Kiviat graphs correspond to the rows (classes and packages). Bar graphs
correspond to the metrics.

For this step, put the cursor anywhere in the data_management row of
the metrics table and select Kiviat graph from the speedmenu. Together
will generate the graph, which shows the distribution of metrics over the
package.

Tips and tricks

Use audits and metrics as your first steps in refactoring code.●

Use Bar graphs when you want to consider the distribution of a particular metric over a collection of classes and packages.●

Use Kiviat graphs when you want to consider the distribution of different metrics over a particular class or package.●

Together Tutorial -- Part 10

http://localhost/10qualityassurance.html (6 of 7) [5/3/2001 3:49:12 PM]

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Tue, Apr 10, 2001

Together Tutorial -- Part 10

http://localhost/10qualityassurance.html (7 of 7) [5/3/2001 3:49:12 PM]

Together Tutorial
Part 11: Multi-User Support and Version Control

Together has multi-user version control that enables teams to share projects, diagrams, and source code. Together ships with CVS, and it can be easily integrated with
any SCC-based version control system as well. (Indeed, Together's file-based architecture means that you can use your favorite file-based version control system
client.)

This section will show how to put the airline project under version control.

Contents:

Putting a project under version control●

Adding files to version control●

Checking files in and out●

Examining version control system properties●

Tips and tricks●

Putting a project under version control

Start this section by opening the airline project.

Step: Enable the airline project for version control.

Putting a project under version control is a multi-step
process. Begin with the project properties, available
from the Main Menu under File|Project Properties.

If the Properties window does not show its
"Resources" section, click on the Advanced
button.

1.

Click the Options button to open the Project
Options window.

2.

Together Tutorial -- Part 11

http://localhost/11versioncontrol.html (1 of 7) [5/3/2001 3:49:15 PM]

Check on Version Control enabled at the top
of the Options window. Then expand Version
Control enabled and scroll down to Use on
the menu.

(We used the default version control settings.
Each version control system has its own menu.

3.

Click OK on the Options window to return to
the Properties window.

4.

Together Tutorial -- Part 11

http://localhost/11versioncontrol.html (2 of 7) [5/3/2001 3:49:15 PM]

Check on Version Control project in the
Properties window.

5.

Click OK to close the Properties
window.When you click OK to close the
Properties window, Together will pop up a
message box to create the repository. Click
Yes.

6.

Adding files to version control

When you enable a project for version control, the class and diagram speedmenus show a new command, Version Control.

Step: Put Agent.java, Ticket.java, Coach.java, and FirstClass.java under version control. Do not keep them checked out.

You can add a single class to version control through Version Control|Add on
its speedmenu. (When a class is not under version control, Add and System are
the only available options.)

In the resulting dialog box, you should leave the first command option
unchecked.

(If you want to add all class files, packages, or diagram files, you can go to the
diagram speedmenu. You can also add via Version Control|System on any
speedmenu.)

Together displays read-only files with a lock (). Your
FirstClass node of the AirlinePD package diagram
should look like ours, with a lock in the lower right
corner.

The Explorer pane Model view shows a
lock on FirstClass also.

Together Tutorial -- Part 11

http://localhost/11versioncontrol.html (3 of 7) [5/3/2001 3:49:15 PM]

Checking files in and out

The files under version control should not be checked out prior to the following step. (If you neglected to uncheck the "Keep checked out" box in the Add to Version
Control popup window, then the files you added will be checked out. In that case, select Version Control|UnCheck out from the class speedmenu.)

Step: Check out Coach.java. Then change the return statement in calcPrice() to: return 199.0;

You can check a file out through its speedmenu: Version Control|Check out.
You'll get a dialog box similar to the one on the right.

You can check out several files at the same time by lassoing them and going to the
speedmenu. The lassoed files will appear on the upper (selection) panel.

All Version Control systems offer these options.

Add -- adds a file to the version control system●

Get -- for looking at a file without changing it●

Check in -- returns the file to the repository●

Check out -- checks the file out of the repository●

Together's dialog boxes vary according to which version control system is in
effect. Under CVS LAN, Together has two additional options:

UnCheck out -- to check a file back in without recording its changes since
being checked out.

●

Update -- to update the local copy of a file by merging in the other users'
modifications from the repository.

●

Step: Try to modify FirstClass.java the same way as you did Coach.java.
Then check FirstClass.java out. Modify it, changing the return statement in calcPrice() to: return 499.0;

A file under version that is not checked out is read-only. The Editor pane will not allow you to modify it.

Step: Check in Coach.java. Put a comment in the Comment portion of the Check-in dialog box.

You can check in a class or diagram via its speedmenu. The dialog box is similar to the Check-out dialog box.

We replaced "Empty comment" with "Correct coach class ticket pricing"

Examining version control system properties

You should now have four files under version control:

Agent.java never checked out.1.

Ticket.java never checked out.2.

Coach.java checked out, modified, and checked back in.3.

FirstClass.java modified and still checked out.4.

Step: Determine the status of each file via the Version Control System window.

Together Tutorial -- Part 11

http://localhost/11versioncontrol.html (4 of 7) [5/3/2001 3:49:15 PM]

This step is easy. The System window is a choice on the speedmenu for each class and diagram under version control.

Below is a picture of our System window. Notice the following:

Files with black names are not under version control. You can click off the button under the file listing on the far right far right () to suppress listing them.●

Agent.java and Coach.java have read-only lock icons.●

FirstClass is listed in red, indicating that it has been modified.●

Step: Examine two items:

the history of Coach.java●

the difference between FirstClass.java when it was checked out and now●

Together Tutorial -- Part 11

http://localhost/11versioncontrol.html (5 of 7) [5/3/2001 3:49:15 PM]

Each item in the Version Control System window has a speedmenu. The items correspond to active items on main menu.

Shown below are the History and the Difference window for FirstClass.java. The Difference window displays original version of
FirstClass.java on the left and modified version on the right. (History windows show comments.)

Tips and Tricks

Diagram files, source code files, and the project file (.tpr) typically go under version control. Workspace settings files (.tws) do not.●

Be careful using the Remove option for version control. It deletes the file.●

Together Tutorial -- Part 11

http://localhost/11versioncontrol.html (6 of 7) [5/3/2001 3:49:15 PM]

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Tue, Apr 10, 2001

Together Tutorial -- Part 11

http://localhost/11versioncontrol.html (7 of 7) [5/3/2001 3:49:15 PM]

Together Tutorial
Part 12: Running and Debugging Java Projects

In this final part of the Together Tutorial, you will learn how to use the Editor and the Message pane for compiling and debugging Java code. We have faithfully
used the airline project for the first eleven parts of the Together Tutorial. But we will abandon it here in favor of the richer CashSales project.

On Windows platforms, Together installs and uses javac.exe from Java2TM SDK version 1.3 as the default compiler. Unix users need to install the appropriate
Java2 SDK and put it into the search path. With all platforms, Together provides a complete IDE for Java development.

Contents:

Viewing the Message pane as a simple console window●

Setting breakpoints and animating the debugger●

Running under the debugger●

Setting watchpoints and changing program execution●

Tips and Tricks●

Viewing the Message pane as a simple console window

For a final bit of fun with the airline project, you'll add a simple output statement to the Driver class. (Remember that one? It's in the UserInterface package.)

Step: Put this statement inside Driver.main().

 System.out.println("Goodbye Airline Project.");

Then compile the project.

Buttons for making () and building () a project are on the Main
toolbar and on Tools from the Main menu.

Together will execute the default Java compiler and make utility,
showing the results in the Message pane. If there are errors or
warnings, you can click on the appropriate line inside the Message
pane and navigate directly to the offending code.

You will see the results of compiling the project on the Message
pane.

Step: Run the airline project.

Together Tutorial -- Part 12

http://localhost/12debugtutor.html (1 of 7) [5/3/2001 3:49:18 PM]

There's a run button () on the Main toolbar also.

When you run a Java project, Together asks for the
class with the main method. For this project, you
have no choice. The snapshot on the right shows
the pop-up windows from the run command.

The Message pane gives Together a simple
console window. The Message pane is the focus of
standard input and output of programs running
within Together.

Shown below is the resulting execution. The tab at
the right of the pane displays the class with the
main.

Notice that the Message pane no longer has a
single tab. You can close a tab with the tab
speedmenu.

This wraps up all of the Together Tutorial work on the airline project. Congratulations. You've learned a lot!

Setting breakpoints and animating the debugger

Step: Open the CashSales project.

Opening a project ought to be easy. There are several options.

Use the File|Open Project command.●

If CashSales has been opened recently, use the File|Reopen command.●

From the Directory tab of the Explorer pane, click on CashSales.tpr in the CashSales folder.●

Together warns you that it cannot open another project without closing the current one.

Together Tutorial -- Part 12

http://localhost/12debugtutor.html (2 of 7) [5/3/2001 3:49:18 PM]

Step: Set a breakpoint at the last curly brace in the constructor for CashSaleDetail (from the problem_domain package).

You need to pull up the code in the Together editor. Having trouble getting
there? Use the Overview tab in the Explorer to steer CashSaleDetail to the
middle of the Diagram pane... and go from there.

Once you find the line in the editor, click the cursor at the line on the Editor's
left margin. This will highlight the line in red and put a breakpoint icon at the
left margin.

Mouse clicking on the left margin toggles adding and removing the
breakpoint.

The Debugger tab of the Message pane displays all of the breakpoints. (If the tab is not showing, select Tools|Run/Debug|Run|Show debugger tab from the
Main menu.)

Step: Set the debugger to show the connection between diagram and code while it is running a project.

Go to the Debug tab on the Project or Default Options
(available on Options from the Main menu). Check Display
class/member in class diagram on.

Checking on this option has the effect of animating the
debugger. When you run the project in the animated debugger,
Together will scroll the class diagram to highlight the method
that you are stepping through.

Together Tutorial -- Part 12

http://localhost/12debugtutor.html (3 of 7) [5/3/2001 3:49:18 PM]

Running under the debugger

Step: Run the CashSales application under the debugger. At the breakpoint, examine the current stack frame and the value of
CashSaleDetail.

The Main toolbar has a Run in Debugger button (). When debugging execution begins, the Debugger tab expands to show detailed runtime information. (Be
patient for the application to get going. You'll need to press the "Scan" button to get to the breakpoint.)

The snapshot below was taken while execution of CashSales was suspended at the breakpoint. The left side of the Debugger pane shows a toolbar, with buttons
to guide execution of the program, examine frames and threads, and set various kinds of breakpoints.

The Frame tab (at the front in the snapshot) shows the contents of the current stack frame when it hits the breakpoint. At that point, you can expand this to see
CashSaleDetail.qty.

Clicking the method name at the top of the Frame tab shows the runtime stack for this thread.

Together Tutorial -- Part 12

http://localhost/12debugtutor.html (4 of 7) [5/3/2001 3:49:18 PM]

The left margin of the Editor changes when a project is running under debug mode. Small diamonds () mark executable lines. And the breakpoint icon changes
from not running () to running ().

Setting watchpoints and changing program execution

Step: Set a watchpoint on CashSaleDetail.qty. Then change the value of qty to 47.

You can set a watchpoint when execution is suspended at a breakpoint. Click the watchpoint icon () on
the leftmost panel of the Message pane.

You'll get a dialog box similar to the one on the right. Enter the expression as shown.

You can set the value of a watchpoint expression with the pull-down menu on the watchpoint line. First, left click the line to highlight it in blue. Then right click
to get the menu. For this exercise, select "Change Value."

You can set the value of qty in the resulting dialog box.

Together Tutorial -- Part 12

http://localhost/12debugtutor.html (5 of 7) [5/3/2001 3:49:18 PM]

Click the continue button () on the Message pane to get going again.

The snapshot to the right shows the result on our user interface. The result will vary according to
the item scanned.

Tips and Tricks

Don't use the make button on a project that is up to date or that has nothing to build. You can force a make by choosing Tools|Rebuild Project from the
Main menu.

●

You can remove a breakpoint via its speedmenu in the Debugger tab. Select the breakpoint from the Debugger list and right click. There's a "Remove
breakpoint" option. Alternatively, you can select the breakpoint and hit Delete.

●

When execution is suspended at a method call, clicking on the "Step into" button () will not step into the method when Smart Step is on. (The
Debugger tab has a "Skip classes" tab that lists the classes that the debugger won't enter. By default, these are classes in the standard Java class libraries.
You can add more classes to the list with the "Skip classes" speedmenu. The tab has a check box that allows you to step into the class, assuming its
source code is available.)

●

C++ programmers can compile their code within Together. But first, they need to modify the compiler specification in the Together configuration options
to point to their C++ compiler.

●

Together Tutorial -- Part 12

http://localhost/12debugtutor.html (6 of 7) [5/3/2001 3:49:18 PM]

Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Thu, Apr 12, 2001

Together Tutorial -- Part 12

http://localhost/12debugtutor.html (7 of 7) [5/3/2001 3:49:18 PM]

	localhost
	Together Practical Guide
	Together Quick Tour -- Part 1
	Together Quick Tour -- Part 2
	Together Quick Tour -- Part 3
	Together Quick Tour -- Part 4
	Together Tutorial -- Part 1
	Together Tutorial -- Part 2
	Together Tutorial -- Part 3
	Together Tutorial -- Part 4
	Together Tutorial -- Part 5
	Together Tutorial -- Part 6
	Together Tutorial -- Part 7
	Together Tutorial -- Part 8
	Together Tutorial -- Part 9
	Together Tutorial -- Part 10
	Together Tutorial -- Part 11
	Together Tutorial -- Part 12

